Werner Christiane, Hasenbein Nils, Maia Rodrigo, Beyschlag Wolfram, Máguas Cristina
Experimental and Systems Ecology, University of Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
Rapid Commun Mass Spectrom. 2007;21(8):1352-60. doi: 10.1002/rcm.2970.
Recent insights into fractionation during dark respiration and rapid dynamics in isotope signatures of leaf- and ecosystem-respired CO(2) indicate the need for new methods for high time-resolved measurements of the isotopic signature of respired CO(2) (delta(13)C(res)). We present a rapid and simple method to analyse delta(13)C(res) using an in-tube incubation technique and an autosampler for small septum-capped vials. The effect of storage on the delta(18)O and delta(13)C ratios of ambient CO(2) concentrations was tested with different humidity and temperatures. delta(13)C ratios remained stable over 72 h, whereas delta(18)O ratios decreased after 24 h. Storage at 4 degrees C improved the storage time for delta(18)O. Leaves or leaf discs were incubated in the vials, flushed with CO(2)-free air and respired CO(2) was automatically sampled within 5 min on a microGas autosampler interfaced to a GV-Isoprime isotope ratio mass spectrometer. Results were validated by simultaneous on-line gas-exchange measurements of delta(13)C(res) of attached leaves. This method was used to evaluate the short-term (5-60 min) and diurnal dynamics of delta(13)C(res) in an evergreen oak (Quercus ilex) and a herb (Tolpis barbata). An immediate depletion of 2-4 per thousand from the initial delta(13)C(res) value occurred during the first 30 min of darkening. Q. ilex exhibited further a substantial diurnal enrichment in delta(13)C(res) of 8 per thousand, followed by a progressive depletion during the night. In contrast, T. barbata did not exhibit a distinct diurnal pattern. This is in accordance with recent theory on fractionation in metabolic pathways and may be related to the different utilisation of the respiratory substrate in the fast-growing herb and the evergreen oak. These data indicate substantial and rapid dynamics (within minutes to hours) in delta(13)C(res), which differed between species and probably the growth status of the plant. The in-tube incubation method enables both high time-resolved analysis and extensive sampling across different organs, species and functional types.
近期对暗呼吸过程中分级分离以及叶片和生态系统呼吸产生的二氧化碳同位素特征快速动态变化的深入研究表明,需要新的方法来对呼吸产生的二氧化碳同位素特征(δ¹³Cres)进行高时间分辨率测量。我们提出了一种快速简便的方法,利用管内培养技术和用于小密封瓶的自动进样器来分析δ¹³Cres。测试了不同湿度和温度下储存对环境二氧化碳浓度的δ¹⁸O和δ¹³C比值的影响。δ¹³C比值在72小时内保持稳定,而δ¹⁸O比值在24小时后下降。4℃储存可延长δ¹⁸O的储存时间。将叶片或叶盘置于小瓶中,用不含二氧化碳的空气冲洗,呼吸产生的二氧化碳在5分钟内由与GV-Isoprime同位素比率质谱仪相连的微量气体自动进样器自动采样。通过对附着叶片的δ¹³Cres进行同步在线气体交换测量验证了结果。该方法用于评估常绿橡树(冬青栎)和一种草本植物(糙叶托氏菊)中δ¹³Cres的短期(5 - 60分钟)和昼夜动态变化。在黑暗的最初30分钟内,δ¹³Cres值相对于初始值立即下降了2‰ - 4‰。冬青栎的δ¹³Cres在昼夜期间还表现出高达8‰的显著富集,随后在夜间逐渐下降。相比之下,糙叶托氏菊没有明显的昼夜模式。这与代谢途径中分级分离的最新理论一致,可能与快速生长的草本植物和常绿橡树对呼吸底物的不同利用有关。这些数据表明δ¹³Cres存在显著且快速的动态变化(在数分钟到数小时内),不同物种以及可能不同植物生长状态之间存在差异。管内培养方法既能够进行高时间分辨率分析,又能对不同器官、物种和功能类型进行广泛采样。