Suppr超能文献

The distribution and the modulation of tyrosine hydroxylase immunoreactivity in the lateral olivocochlear system of the guinea-pig.

作者信息

Niu X, Bogdanovic N, Canlon B

机构信息

Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.

出版信息

Neuroscience. 2004;125(3):725-33. doi: 10.1016/j.neuroscience.2004.02.023.

Abstract

It was previously shown that tyrosine hydroxylase (TH) immunoreactivity in the terminals of the lateral efferents of the cochlea is decreased by acoustic trauma and that sound preconditioning counteracted this decrease [Hear Res 174 (2002) 124]. Here we identify those neurons in the lateral olivocochlear system (LOC) in the brainstem that regulates the peripheral expression of TH in the cochlea. By employing retrograde tracing techniques, dextran-labeled neurons were found predominantly in the ipsilateral LOC system including lateral superior olive (LSO), and the surrounding periolivary regions (dorsal periolivary nucleus [DPO], dorsolateral periolivary nucleus [DLPO], lateral nucleus of trapezoid body [LNTB]). Employing immunocytochemistry, it was found that a control group had 35% of the ipsilateral LOC neurons positively stained with TH. Of the total population of TH neurons, 77% were double-stained (TH and dextran) in the LOC system. Acoustic trauma decreased the number of TH positive neurons in the LSO and the surrounding DLPO, and caused a reduction of TH fiber immunolabeling in these regions. Changes were not found in the DPO or the LNTB after acoustic trauma. Sound conditioning protected against the decrease of TH immunolabeling by acoustic trauma and increased the fiber staining for TH in the LSO and DLPO, but not in the DPO or the LNTB. These results provide evidence that TH positive neurons are present in the LOC system in the guinea-pig. It is now demonstrated that protection against acoustic trauma by sound conditioning has a central component that is governed by TH in the LSO and the surrounding periolivary DLPO region.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验