Oussatcheva Elena A, Pavlicek Jeffrey, Sankey Otto F, Sinden Richard R, Lyubchenko Yuri L, Potaman Vladimir N
Center for Genome Research, Institute of Biosciences and Technology, Texas A and M University System Health Sciences Center, 2121 W. Holcombe Blvd., Houston, TX 77030, USA.
J Mol Biol. 2004 May 7;338(4):735-43. doi: 10.1016/j.jmb.2004.02.075.
DNA supercoiling plays an important role in many genetic processes such as replication, transcription, and recombination. Supercoiling provides energy for helix un-pairing and drives the formation of alternative DNA structural transitions, like cruciforms. Supercoiling also allows distant DNA regions to be brought into close proximity through the formation of inter-wound supercoils. Recently, we showed that the inverted repeat-to-cruciform transition acts as a molecular switch, influencing the global topology of a topological plasmid domain. As alternative DNA structures can affect global topology, a corollary hypothesis might be that the localization of a specific DNA sequence within a topological domain may affect the energetics required for formation of an alternative DNA structure. Here, we test this hypothesis and show that the localization of an inverted repeat to an apical position increases the rate of cruciform formation and reduces the superhelical energy required to drive the transition. For this, we created a series of plasmids containing an inverted repeat and an A-tract bent DNA sequence. The A-tract forms a permanent 180 degrees bend irrespective of DNA topology. The inverted repeat and the bent sequence were placed either at six o'clock or nine o'clock positions with respect to each other. Using 2D agarose gel electrophoresis, we show that the six o'clock construct extrudes the cruciform at a lower superhelical density than a control plasmid without the bend. Atomic force microscopy shows that the nine o'clock construct has the propensity to form branched molecules with the cruciform at the end of one branch. These results demonstrate that the localization of sequences within specific regions of a topological domain can affect the energetics of structural transitions as well as the branching structure of the domain. As structural transitions can be involved in biological processes, localization of alternative conformation-forming sequences to specific locations within a domain provides an additional means for gene regulation.
DNA超螺旋在许多遗传过程中发挥着重要作用,如复制、转录和重组。超螺旋为螺旋解链提供能量,并驱动形成诸如十字形等替代性DNA结构转变。超螺旋还能通过形成相互缠绕的超螺旋使远距离的DNA区域紧密靠近。最近,我们发现反向重复序列到十字形的转变充当分子开关,影响拓扑质粒结构域的整体拓扑结构。由于替代性DNA结构会影响整体拓扑结构,一个必然的假设可能是特定DNA序列在拓扑结构域内的定位可能会影响形成替代性DNA结构所需的能量。在此,我们对这一假设进行了验证,结果表明将反向重复序列定位到顶端位置会提高十字形形成的速率,并降低驱动转变所需的超螺旋能量。为此,我们构建了一系列含有反向重复序列和A-序列弯曲DNA序列的质粒。无论DNA拓扑结构如何,A-序列都会形成一个永久性的180度弯曲。反向重复序列和弯曲序列彼此相对地放置在六点或九点位置。使用二维琼脂糖凝胶电泳,我们发现六点构建体在比无弯曲对照质粒更低的超螺旋密度下挤出十字形。原子力显微镜显示九点构建体倾向于形成分支分子,十字形位于一个分支的末端。这些结果表明,拓扑结构域特定区域内序列的定位会影响结构转变的能量以及结构域的分支结构。由于结构转变可能参与生物过程,将形成替代性构象的序列定位到结构域内的特定位置为基因调控提供了一种额外手段。