Suppr超能文献

光合作用中氧化水裂解过程中电子与质子转移的偶联

Coupling of electron and proton transfer in oxidative water cleavage in photosynthesis.

作者信息

Renger G

机构信息

Max-Volmer-Laboratory of the Institute of Chemistry, Technical University Berlin, PC 14, Strasse des 17 Juni 135, D-10623 Berlin, Germany.

出版信息

Biochim Biophys Acta. 2004 Apr 12;1655(1-3):195-204. doi: 10.1016/j.bbabio.2003.07.007.

Abstract

This minireview addresses questions on the mechanism of oxidative water cleavage with special emphasis on the coupling of electron (ET) and proton transfer (PT) of each individual redox step of the reaction sequence and on the mode of O-O bond formation. The following topics are discussed: (1) the multiphasic kinetics of Y(Z)(ox) formation by P680(+*) originate from three different types of rate limitations: (i) nonadiabatic electron transfer for the "fast" ns reaction, (ii) local "dielectric" relaxation for the "slow" ns reaction, and (iii) "large-scale" proton shift for the micros kinetics; (2) the ET/PT-coupling mode of the individual redox transitions within the water oxidizing complex (WOC) driven by Y(Z)(ox) is assumed to depend on the redox state S(i): the oxidation steps of S(0) and S(1) comprise separate ET and PT pathways while those of S(2) and S(3) take place via proton-coupled electron transfer (PCET) analogous to Jerry Babcock's hydrogen atom abstractor model [Biochim. Biophys. Acta, 1458 (2000) 199]; (3) S(3) is postulated to be a multistate redox level of the WOC with fast dynamic equilibria of both redox isomerism and proton tautomerism. The primary event in the essential O-O bond formation is the population of a state S(3)(P) characterized by an electronic configuration and nuclear geometry that corresponds with a complexed hydrogen peroxide; (4) the peroxidic type S(3)(P) is the entatic state for formation of complexed molecular oxygen through S(3) oxidation by Y(Z)(ox); and (5) the protein matrix itself is proposed to exert catalytic activity by functioning as "PCET director". The WOC is envisaged as a supermolecule that is especially tailored for oxidative water cleavage and acts as a molecular machine.

摘要

本微型综述探讨了氧化水裂解机制的相关问题,特别强调了反应序列中每个单独氧化还原步骤的电子转移(ET)和质子转移(PT)的耦合以及O - O键形成的模式。讨论了以下主题:(1)P680(+*)形成Y(Z)(ox)的多相动力学源于三种不同类型的速率限制:(i)“快速”纳秒反应的非绝热电子转移,(ii)“缓慢”纳秒反应的局部“介电”弛豫,以及(iii)微秒动力学的“大规模”质子转移;(2)由Y(Z)(ox)驱动的水氧化复合物(WOC)内各个氧化还原转变的ET/PT耦合模式假定取决于氧化还原状态S(i):S(0)和S(1)的氧化步骤包括单独的ET和PT途径,而S(2)和S(3)的氧化步骤通过类似于杰里·巴布科克的氢原子提取器模型[《生物化学与生物物理学报》,1458 (2000) 199]的质子耦合电子转移(PCET)发生;(3)S(3)被假定为WOC的多态氧化还原水平,具有氧化还原异构和质子互变异构的快速动态平衡。基本O - O键形成的主要事件是一种状态S(3)(P)的占据,其特征在于与络合过氧化氢相对应的电子构型和核几何结构;(4)过氧化物型S(3)(P)是通过Y(Z)(ox)氧化S(3)形成络合分子氧的内稳态;(5)蛋白质基质本身被认为通过充当“PCET导向器”发挥催化活性。WOC被设想为一个超分子,它是专门为氧化水裂解量身定制的,并且充当分子机器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验