Suppr超能文献

锰催化光合作用水氧化所需的氧化态是多少?

What are the oxidation states of manganese required to catalyze photosynthetic water oxidation?

机构信息

Department of Chemistry, Princeton University, Princeton, New Jersey, USA.

出版信息

Biophys J. 2012 Jul 18;103(2):313-22. doi: 10.1016/j.bpj.2012.05.031. Epub 2012 Jul 17.

Abstract

Photosynthetic O(2) production from water is catalyzed by a cluster of four manganese ions and a tyrosine residue that comprise the redox-active components of the water-oxidizing complex (WOC) of photosystem II (PSII) in all known oxygenic phototrophs. Knowledge of the oxidation states is indispensable for understanding the fundamental principles of catalysis by PSII and the catalytic mechanism of the WOC. Previous spectroscopic studies and redox titrations predicted the net oxidation state of the S(0) state to be (Mn(III))(3)Mn(IV). We have refined a previously developed photoassembly procedure that directly determines the number of oxidizing equivalents needed to assemble the Mn(4)Ca core of WOC during photoassembly, starting from free Mn(II) and the Mn-depleted apo-WOC complex. This experiment entails counting the number of light flashes required to produce the first O(2) molecules during photoassembly. Unlike spectroscopic methods, this process does not require reference to synthetic model complexes. We find the number of photoassembly intermediates required to reach the lowest oxidation state of the WOC, S(0), to be three, indicating a net oxidation state three equivalents above four Mn(II), formally (Mn(III))(3)Mn(II), whereas the O(2) releasing state, S(4), corresponds formally to (Mn(IV))(3)Mn(III). The results from this study have major implications for proposed mechanisms of photosynthetic water oxidation.

摘要

光合作用中,水的氧合反应由一个锰离子簇和一个酪氨酸残基共同催化,这个锰离子簇和酪氨酸残基构成了所有已知放氧光合作用生物中光系统 II(PSII)水氧化复合物(WOC)的氧化还原活性组件。了解氧化态对于理解 PSII 的催化基本原理和 WOC 的催化机制是不可或缺的。先前的光谱研究和氧化还原滴定预测,S(0)态的总氧化态为(Mn(III))(3)Mn(IV)。我们改进了之前开发的光组装程序,该程序直接确定了在光组装过程中组装 WOC 的 Mn(4)Ca 核心所需的氧化当量数,起始物为游离的 Mn(II)和 Mn 耗尽的 apo-WOC 复合物。该实验需要计算在光组装过程中产生第一个 O(2)分子所需的闪光次数。与光谱方法不同,该过程不需要参考合成模型配合物。我们发现,达到 WOC 的最低氧化态 S(0)所需的光组装中间体数量为三个,表明 WOC 的总氧化态比四个 Mn(II)高出三个当量,形式上为(Mn(III))(3)Mn(II),而释放 O(2)的状态 S(4)形式上对应于(Mn(IV))(3)Mn(III)。这项研究的结果对光合作用中水氧化的拟议机制有重大影响。

相似文献

引用本文的文献

4
Structural insights into photosystem II assembly.关于光系统 II 组装的结构见解。
Nat Plants. 2021 Apr;7(4):524-538. doi: 10.1038/s41477-021-00895-0. Epub 2021 Apr 12.
6
Water oxidation in photosystem II.光系统 II 中的水氧化。
Photosynth Res. 2019 Oct;142(1):105-125. doi: 10.1007/s11120-019-00648-3. Epub 2019 Jun 11.
7
Metal oxidation states in biological water splitting.生物水分解中的金属氧化态
Chem Sci. 2015 Mar 1;6(3):1676-1695. doi: 10.1039/c4sc03720k. Epub 2015 Jan 9.

本文引用的文献

4
Photoassembly of the Water-Oxidizing Complex in Photosystem II.光系统II中析氧复合物的光组装
Coord Chem Rev. 2008 Feb;252(3-4):347-360. doi: 10.1016/j.ccr.2007.08.022.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验