Suppr超能文献

氧化还原控制与氢键网络:质子耦合电子转移反应与光合放氧复合 物中的酪氨酸 Z

Redox control and hydrogen bonding networks: proton-coupled electron transfer reactions and tyrosine Z in the photosynthetic oxygen-evolving complex.

机构信息

School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.

出版信息

J Phys Chem B. 2013 Feb 7;117(5):1296-307. doi: 10.1021/jp3118314. Epub 2013 Jan 24.

Abstract

In photosynthetic oxygen evolution, redox active tyrosine Z (YZ) plays an essential role in proton-coupled electron transfer (PCET) reactions. Four sequential photooxidation reactions are necessary to produce oxygen at a Mn(4)CaO(5) cluster. The sequentially oxidized states of this oxygen-evolving cluster (OEC) are called the S(n) states, where n refers to the number of oxidizing equivalents stored. The neutral radical, YZ•, is generated and then acts as an electron transfer intermediate during each S state transition. In the X-ray structure, YZ, Tyr161 of the D1 subunit, is involved in an extensive hydrogen bonding network, which includes calcium-bound water. In electron paramagnetic resonance experiments, we measured the YZ• recombination rate, in the presence of an intact Mn(4)CaO(5) cluster. We compared the S(0) and S(2) states, which differ in Mn oxidation state, and found a significant difference in the YZ• decay rate (t(1/2) = 3.3 ± 0.3 s in S(0); t(1/2) = 2.1 ± 0.3 s in S(2)) and in the solvent isotope effect (SIE) on the reaction (1.3 ± 0.3 in S(0); 2.1 ± 0.3 in S(2)). Although the YZ site is known to be solvent accessible, the recombination rate and SIE were pH independent in both S states. To define the origin of these effects, we measured the YZ• recombination rate in the presence of ammonia, which inhibits oxygen evolution and disrupts the hydrogen bond network. We report that ammonia dramatically slowed the YZ• recombination rate in the S(2) state but had a smaller effect in the S(0) state. In contrast, ammonia had no significant effect on YD•, the stable tyrosyl radical. Therefore, the alterations in YZ• decay, observed with S state advancement, are attributed to alterations in OEC hydrogen bonding and consequent differences in the YZ midpoint potential/pK(a). These changes may be caused by activation of metal-bound water molecules, which hydrogen bond to YZ. These observations document the importance of redox control in proton-coupled electron transfer reactions.

摘要

在光合作用的氧气产生中,氧化还原活性酪氨酸 Z(YZ)在质子耦合电子转移(PCET)反应中起着至关重要的作用。在锰(4)钙(5)簇中产生氧气需要进行四个连续的光氧化反应。这个产氧簇(OEC)的依次氧化状态称为 S(n)状态,其中 n 指的是存储的氧化当量数。中性自由基 YZ•在每个 S 状态跃迁时产生,并充当电子转移中间体。在 X 射线结构中,D1 亚基的 Tyr161 参与了广泛的氢键网络,其中包括钙结合水。在电子顺磁共振实验中,我们在完整的 Mn(4)Ca(5)簇存在的情况下测量了 YZ•的复合速率。我们比较了 S(0)和 S(2)状态,它们在锰的氧化态上有所不同,发现 YZ•衰减速率有显著差异(在 S(0)中 t(1/2)=3.3±0.3 s;在 S(2)中 t(1/2)=2.1±0.3 s),并且反应的溶剂同位素效应(SIE)也不同(在 S(0)中为 1.3±0.3;在 S(2)中为 2.1±0.3)。尽管已知 YZ 位点是可溶剂化的,但在这两个 S 状态下,复合速率和 SIE 都与 pH 无关。为了确定这些影响的起源,我们在氨存在的情况下测量了 YZ•的复合速率,氨会抑制氧气产生并破坏氢键网络。我们报告说,氨在 S(2)状态下大大减缓了 YZ•的复合速率,但在 S(0)状态下影响较小。相比之下,氨对 YD•(稳定的酪氨酸自由基)没有显著影响。因此,随着 S 状态的推进观察到的 YZ•衰减的变化归因于 OEC 氢键的变化以及 YZ 中点电势/pK(a)的相应变化。这些变化可能是由于金属结合水分子的活化引起的,这些水分子与 YZ 形成氢键。这些观察结果证明了氧化还原控制在质子耦合电子转移反应中的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验