Krauss Sharon Wald, Lee Gloria, Chasis Joel Anne, Mohandas Narla, Heald Rebecca
Lawrence Berkeley National Laboratory, Life Sciences Division, University of California, Berkeley 94720, USA.
J Biol Chem. 2004 Jun 25;279(26):27591-8. doi: 10.1074/jbc.M402813200. Epub 2004 Apr 21.
Multifunctional structural proteins belonging to the 4.1 family are components of nuclei, spindles, and centrosomes in vertebrate cells. Here we report that 4.1 is critical for spindle assembly and the formation of centrosome-nucleated and motor-dependent self-organized microtubule asters in metaphase-arrested Xenopus egg extracts. Immunodepletion of 4.1 disrupted microtubule arrays and mislocalized the spindle pole protein NuMA. Remarkably, assembly was completely rescued by supplementation with a recombinant 4.1R isoform. We identified two 4.1 domains critical for its function in microtubule polymerization and organization utilizing dominant negative peptides. The 4.1 spectrin-actin binding domain or NuMA binding C-terminal domain peptides caused morphologically disorganized structures. Control peptides with low homology or variant spectrin-actin binding domain peptides that were incapable of binding actin had no deleterious effects. Unexpectedly, the addition of C-terminal domain peptides with reduced NuMA binding caused severe microtubule destabilization in extracts, dramatically inhibiting aster and spindle assembly and also depolymerizing preformed structures. However, the mutant C-terminal peptides did not directly inhibit or destabilize microtubule polymerization from pure tubulin in a microtubule pelleting assay. Our data showing that 4.1 is a crucial factor for assembly and maintenance of mitotic spindles and self-organized and centrosome-nucleated microtubule asters indicates that 4.1 is involved in regulating both microtubule dynamics and organization. These investigations underscore an important functional context for protein 4.1 in microtubule morphogenesis and highlight a previously unappreciated role for 4.1 in cell division.
属于4.1家族的多功能结构蛋白是脊椎动物细胞核、纺锤体和中心体的组成部分。在此,我们报告4.1对于中期停滞的非洲爪蟾卵提取物中的纺锤体组装以及中心体成核和马达蛋白依赖的自组装微管星状体的形成至关重要。4.1的免疫耗竭破坏了微管阵列,并使纺锤体极蛋白NuMA定位错误。值得注意的是,补充重组4.1R异构体可完全挽救组装过程。我们利用显性负性肽鉴定出了4.1在微管聚合和组织功能中起关键作用的两个结构域。4.1血影蛋白-肌动蛋白结合结构域或NuMA结合C末端结构域肽导致形态紊乱的结构。与肌动蛋白结合能力低同源性的对照肽或无法结合肌动蛋白的变体血影蛋白-肌动蛋白结合结构域肽没有有害影响。出乎意料的是,添加具有降低的NuMA结合能力的C末端结构域肽会导致提取物中的微管严重不稳定,显著抑制星状体和纺锤体组装,并使预先形成的结构解聚。然而,在微管沉淀试验中,突变的C末端肽并没有直接抑制或破坏纯微管蛋白的微管聚合。我们的数据表明,4.1是有丝分裂纺锤体组装和维持以及自组装和中心体成核的微管星状体的关键因素,这表明4.1参与调节微管动力学和组织。这些研究强调了蛋白质4.1在微管形态发生中的重要功能背景,并突出了4.1在细胞分裂中以前未被认识的作用。