School of Biosciences and Centre for Biomedical Informatics, University of Kent, Canterbury, CT2 7NJ, UK.
Protoplasma. 2010 Aug;244(1-4):99-131. doi: 10.1007/s00709-010-0181-1. Epub 2010 Jul 29.
The cells in animals face unique demands beyond those encountered by their unicellular eukaryotic ancestors. For example, the forces engendered by the movement of animals places stresses on membranes of a different nature than those confronting free-living cells. The integration of cells into tissues, as well as the integration of tissue function into whole animal physiology, requires specialisation of membrane domains and the formation of signalling complexes. With the evolution of mammals, the specialisation of cell types has been taken to an extreme with the advent of the non-nucleated mammalian red blood cell. These and other adaptations to animal life seem to require four proteins--spectrin, ankyrin, 4.1 and adducin--which emerged during eumetazoan evolution. Spectrin, an actin cross-linking protein, was probably the earliest of these, with ankyrin, adducin and 4.1 only appearing as tissues evolved. The interaction of spectrin with ankyrin is probably a prerequisite for the formation of tissues; only with the advent of vertebrates did 4.1 acquires the ability to bind spectrin and actin. The latter activity seems to allow the spectrin complex to regulate the cell surface accumulation of a wide variety of proteins. Functionally, the spectrin-ankyrin-4.1-adducin complex is implicated in the formation of apical and basolateral domains, in aspects of membrane trafficking, in assembly of certain signalling and cell adhesion complexes and in providing stability to otherwise mechanically fragile cell membranes. Defects in this complex are manifest in a variety of hereditary diseases, including deafness, cardiac arrhythmia, spinocerebellar ataxia, as well as hereditary haemolytic anaemias. Some of these proteins also function as tumor suppressors. The spectrin-ankyrin-4.1-adducin complex represents a remarkable system that underpins animal life; it has been adapted to many different functions at different times during animal evolution.
动物细胞面临着超越单细胞真核生物祖先所面临的独特需求。例如,动物运动产生的力对膜施加的压力与自由生活细胞所面临的压力不同。细胞整合到组织中,以及组织功能整合到整个动物生理学中,需要膜域的特化和信号复合物的形成。随着哺乳动物的进化,非核哺乳动物红细胞的出现使细胞类型的特化达到了极致。这些以及其他对动物生活的适应似乎需要四种蛋白质——血影蛋白、锚蛋白、4.1 和踝蛋白——它们在后生动物进化过程中出现。血影蛋白是一种肌动蛋白交联蛋白,可能是最早出现的蛋白质,锚蛋白、踝蛋白和 4.1 只在组织进化时才出现。血影蛋白与锚蛋白的相互作用可能是组织形成的先决条件;只有在出现脊椎动物时,4.1 才获得与血影蛋白和肌动蛋白结合的能力。后一种活性似乎允许血影蛋白复合物调节细胞表面多种蛋白质的积累。在功能上,血影蛋白-锚蛋白-4.1-踝蛋白复合物参与顶端和基底外侧结构域的形成、膜运输的各个方面、某些信号和细胞粘附复合物的组装以及为原本机械脆弱的细胞膜提供稳定性。该复合物的缺陷表现为各种遗传性疾病,包括耳聋、心律失常、脊髓小脑共济失调以及遗传性溶血性贫血。其中一些蛋白质也作为肿瘤抑制因子发挥作用。血影蛋白-锚蛋白-4.1-踝蛋白复合物代表了一个支持动物生命的卓越系统;它在动物进化的不同时期适应了许多不同的功能。