Ameur Adam, Aurell Erik, Carlsson Mats, Westholm Jakub Orzechowski
SICS, Swedish Institute of Computer Science, P.O. Box 1263, S-164 29 Kista, Sweden.
In Silico Biol. 2004;4(2):225-41.
Generally, there is a trade-off between methods of gene expression analysis that are precise but labor-intensive, e.g. RT-PCR, and methods that scale up to global coverage but are not quite as quantitative, e.g. microarrays. In the present paper, we show how how a known method of gene expression profiling (K. Kato, Nucleic Acids Res. 23, 3685-3690 (1995)), which relies on a fairly small number of steps, can be turned into a global gene expression measurement by advanced data post-processing, with potentially little loss of accuracy. Post-processing here entails solving an ancillary combinatorial optimization problem. Validation is performed on in silico experiments generated from the FANTOM data base of full-length mouse cDNA. We present two variants of the method. One uses state-of-the-art commercial software for solving problems of this kind, the other a code developed by us specifically for this purpose, released in the public domain under GPL license.
一般来说,在基因表达分析方法之间存在权衡:例如,精确但劳动强度大的方法(如RT-PCR)与能够扩大到全局覆盖但定量性稍差的方法(如微阵列)。在本文中,我们展示了一种已知的基因表达谱分析方法(K. Kato,《核酸研究》23,3685 - 3690(1995)),该方法依赖相当少的步骤,如何通过先进的数据后处理转化为全局基因表达测量,且准确性可能几乎没有损失。这里的后处理需要解决一个辅助组合优化问题。验证是在从全长小鼠cDNA的FANTOM数据库生成的计算机模拟实验上进行的。我们展示了该方法的两个变体。一个使用最先进的商业软件来解决这类问题,另一个是我们专门为此目的开发的代码,根据GPL许可在公共领域发布。