Suppr超能文献

一种评估医学图像质量的统计方法:以位丢弃和图像压缩为例的研究

A statistical method for evaluation quality of medical images: a case study in bit discarding and image compression.

作者信息

Chen Tzong-Jer, Chuang Keh-Shih, Chiang Yuang-Chin, Chang Jen-Hao, Liu Ren-Shyan

机构信息

Department of Nuclear Science, National Tsing-Hua University, Hsinchu 30043, Taiwan, ROC.

出版信息

Comput Med Imaging Graph. 2004 Jun;28(4):167-75. doi: 10.1016/j.compmedimag.2004.01.003.

Abstract

Many studies have been performed on quality evaluation for subtle differences in medical images. However, only limited success has been achieved. In this paper, medical images were prior manipulated by denoising, lossy compression and filtering. The Moran statistics is then applied to extract spatial information of images and using Kolmogorov-Smirnov (KS) test to determine whether the manipulated and original images differ significantly. Results show that on average discarding 1-2 bits in T1 and CR images or 2-3 bits in T2 and body CT images are indistinguishable. This method is also applied to a reconstructed MR, body CT image and an electronic SMPTE (Society of Motion Picture and Television Engineer) phantom from lossy image compression software. Compression ratios of 16:1 for a MR image, 8-9:1 for a cropped body CT image, 7:1 and 5:1 for high- and low-resolution regions in electronic phantom is proved undifferentiated from original. The proposed method is useful for complementing the human visual system, to optimize the performance of image compression technique.

摘要

针对医学图像中的细微差异进行质量评估的研究已有很多。然而,取得的成功有限。在本文中,先对医学图像进行去噪、有损压缩和滤波处理。然后应用莫兰统计量来提取图像的空间信息,并使用柯尔莫哥洛夫-斯米尔诺夫(KS)检验来确定处理后的图像与原始图像是否存在显著差异。结果表明,平均而言,在T1和CR图像中丢弃1 - 2比特,或在T2和身体CT图像中丢弃2 - 3比特是无法区分的。该方法还应用于从有损图像压缩软件重建的MR图像、身体CT图像以及电子SMPTE(电影与电视工程师协会)体模。结果证明,MR图像压缩比为16:1、裁剪后的身体CT图像压缩比为8 - 9:1、电子体模高分辨率和低分辨率区域压缩比分别为7:1和5:1时,与原始图像无差异。所提出的方法有助于补充人类视觉系统,以优化图像压缩技术的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验