Suppr超能文献

使用癌组织活检百分比、活检Gleason分级和血清前列腺特异性抗原预测根治性前列腺切除术后前列腺特异性抗原复发的术前模型。

Preoperative model for predicting prostate specific antigen recurrence after radical prostatectomy using percent of biopsy tissue with cancer, biopsy Gleason grade and serum prostate specific antigen.

作者信息

Freedland Stephen J, Terris Martha K, Csathy George S, Kane Christopher J, Amling Christopher L, Presti Joseph C, Dorey Frederick, Aronson William J

机构信息

Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland 21287, USA.

出版信息

J Urol. 2004 Jun;171(6 Pt 1):2215-20. doi: 10.1097/01.ju.0000124463.13319.0a.

Abstract

PURPOSE

We developed a preoperative model to risk stratify patients for prostate specific antigen (PSA) failure following radical prostatectomy (RP) and identify those at high risk who would be potential candidates for neoadjuvant clinical trials.

MATERIALS AND METHODS

A retrospective survey of 459 patients from the SEARCH Database treated with RP between 1990 and 2002 was done. Multivariate analysis was used to compare the preoperative variables of patient age, race, PSA, biopsy Gleason score, clinical stage and percent of prostate needle biopsy tissue with cancer for the ability to predict time to PSA recurrence following RP. Significant independent predictors were combined to create a novel risk grouping model.

RESULTS

On multivariate analysis biopsy Gleason score (p < 0.001), percent of biopsy tissue with cancer (p < 0.001) and serum PSA (p = 0.001) were the only significant independent predictors of PSA failure. Combining these 3 significant predictors of PSA failure using previously published cutoff points for each variable generated a 4 tier preoperative model for predicting biochemical failure following RP (HR 1.91 for each 1 risk category increase, CI 1.62 to 2.26, p < 0.001). The model further stratified patients who were already stratified into low, intermediate and high risk groups based on a previously described model using PSA, biopsy Gleason score and clinical stage. A simplified table was developed to predict the risk of biochemical recurrence within 2 years following surgery, as stratified by percent of tissue with cancer, PSA and biopsy Gleason score.

CONCLUSIONS

A combination of serum PSA, biopsy Gleason score and percent of prostate biopsy tissue with cancer define a new preoperative model for predicting PSA failure following RP. This model further stratified patients who were already stratified based on PSA, biopsy Gleason score and clinical stage, and it can be used preoperatively to identify patients at high risk who would be candidates for neoadjuvant clinical trials. Using this model an easy to use table was developed to predict preoperatively the 2-year risk of PSA recurrence following RP.

摘要

目的

我们开发了一种术前模型,用于对接受根治性前列腺切除术(RP)后的前列腺特异性抗原(PSA)失败风险进行分层,并识别出那些高风险患者,他们可能是新辅助临床试验的潜在候选者。

材料与方法

对1990年至2002年间在SEARCH数据库中接受RP治疗的459例患者进行了回顾性调查。采用多变量分析比较患者年龄、种族、PSA、活检Gleason评分、临床分期以及前列腺穿刺活检组织中癌组织所占百分比等术前变量,以预测RP后PSA复发时间的能力。将显著的独立预测因素组合起来,创建一个新的风险分组模型。

结果

多变量分析显示,活检Gleason评分(p < 0.001)、活检组织中癌组织所占百分比(p < 0.001)和血清PSA(p = 0.001)是PSA失败的仅有的显著独立预测因素。使用先前公布的每个变量的截断点,将这3个PSA失败的显著预测因素组合起来,生成了一个用于预测RP后生化失败的4层术前模型(每增加1个风险类别,风险比为1.91,置信区间为1.62至2.26,p < 0.001)。该模型进一步对那些已经根据先前描述的使用PSA、活检Gleason评分和临床分期的模型分层为低、中、高风险组的患者进行了分层。制定了一个简化表格,以预测手术后2年内生化复发的风险,根据癌组织所占百分比、PSA和活检Gleason评分进行分层。

结论

血清PSA、活检Gleason评分和前列腺活检组织中癌组织所占百分比的组合定义了一种用于预测RP后PSA失败的新术前模型。该模型进一步对那些已经根据PSA、活检Gleason评分和临床分期进行分层的患者进行了分层,并且可以在术前用于识别那些高风险患者,他们可能是新辅助临床试验的候选者。使用该模型开发了一个易于使用的表格,以术前预测RP后2年的PSA复发风险。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验