Suppr超能文献

用于改进微阵列归一化和比率估计的弱点的统计监测。

Statistical monitoring of weak spots for improvement of normalization and ratio estimates in microarrays.

作者信息

Dozmorov Igor, Knowlton Nicholas, Tang Yuhong, Centola Michael

机构信息

Department of Arthritis and Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.

出版信息

BMC Bioinformatics. 2004 May 5;5:53. doi: 10.1186/1471-2105-5-53.

Abstract

BACKGROUND

Several aspects of microarray data analysis are dependent on identification of genes expressed at or near the limits of detection. For example, regression-based normalization methods rely on the premise that most genes in compared samples are expressed at similar levels and therefore require accurate identification of nonexpressed genes (additive noise) so that they can be excluded from the normalization procedure. Moreover, key regulatory genes can maintain stringent control of a given response at low expression levels. If arbitrary cutoffs are used for distinguishing expressed from nonexpressed genes, some of these key regulatory genes may be unnecessarily excluded from the analysis. Unfortunately, no accurate method for differentiating additive noise from genes expressed at low levels is currently available.

RESULTS

We developed a multistep procedure for analysis of mRNA expression data that robustly identifies the additive noise in a microarray experiment. This analysis is predicated on the fact that additive noise signals can be accurately identified by both distribution and statistical analysis.

CONCLUSIONS

Identification of additive noise in this manner allows exclusion of noncorrelated weak signals from regression-based normalization of compared profiles thus maximizing the accuracy of these methods. Moreover, genes expressed at very low levels can be clearly identified due to the fact that their expression distribution is stable and distinguishable from the random pattern of additive noise.

摘要

背景

微阵列数据分析的几个方面依赖于对在检测限或接近检测限表达的基因的识别。例如,基于回归的归一化方法依赖于这样一个前提,即比较样本中的大多数基因以相似水平表达,因此需要准确识别未表达的基因(加性噪声),以便将它们从归一化过程中排除。此外,关键调控基因可以在低表达水平下对给定反应保持严格控制。如果使用任意阈值来区分表达基因和未表达基因,这些关键调控基因中的一些可能会被不必要地排除在分析之外。不幸的是,目前尚无准确方法区分加性噪声和低水平表达的基因。

结果

我们开发了一种用于分析mRNA表达数据的多步骤程序,该程序能可靠地识别微阵列实验中的加性噪声。该分析基于这样一个事实,即加性噪声信号可以通过分布和统计分析准确识别。

结论

以这种方式识别加性噪声可以从基于回归的比较图谱归一化中排除不相关的弱信号,从而最大限度地提高这些方法的准确性。此外,由于其表达分布稳定且与加性噪声的随机模式可区分,因此可以清楚地识别出极低水平表达的基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1801/415561/38a296203a5c/1471-2105-5-53-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验