Suppr超能文献

蛋白质组学用于诊断人类肿瘤并提供预后信息。

Proteomics to diagnose human tumors and provide prognostic information.

作者信息

Ornstein David K, Petricoin Emmanuel F

机构信息

Department of Urology, University of California, Irvine UCI Medical Center, Orange, California 92868, USA.

出版信息

Oncology (Williston Park). 2004 Apr;18(4):521-9; discussion 529-32.

Abstract

Proteomics is a rapidly emerging scientific discipline that holds great promise in identifying novel diagnostic and prognostic biomarkers for human cancer. Technologic improvements have made it possible to profile and compare the protein composition within defined populations of cells. Laser capture microdissection is a tool for procuring pure populations of cells from human tissue sections to be used for downstream proteomic analysis. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) has been used traditionally to separate complex mixtures of proteins. Improvements in this technology have greatly enhanced resolution and sensitivity providing a more reproducible and comprehensive survey. Image analysis software and robotic instrumentation have been developed to facilitate comparisons of complex protein expression patterns and isolation of differentially expressed proteins spots. Differential in-gel electrophoresis (DIGE) facilitates protein expression by labeling different populations of proteins with fluorescent dyes. Isotope-coded affinity tagging (ICAT) uses mass spectroscopy for protein separation and different isotope tags for distinguishing populations of proteins. Although in the past proteomics has been primarily used for discovery, significant efforts are being made to develop proteomic technologies into clinical tools. Reverse-phase protein arrays offer a robust new method of quantitatively assessing expression levels and the activation status of a panel of proteins. Surface-enhanced laser-desorption/ionization time-of-flight (SELDI-TOF) mass spectroscopy rapidly assesses complex protein mixtures in tissue or serum. Combined with artificial intelligence-based pattern recognition algorithms, this emerging technology can generate highly accurate diagnostic information. It is likely that mass spectroscopy-based serum proteomics will evolve into useful clinical tools for the detection and treatment of human cancers.

摘要

蛋白质组学是一门迅速兴起的科学学科,在识别人类癌症新的诊断和预后生物标志物方面具有巨大潜力。技术进步使得对特定细胞群体内的蛋白质组成进行分析和比较成为可能。激光捕获显微切割是一种从人体组织切片中获取纯净细胞群体以用于下游蛋白质组学分析的工具。传统上二维聚丙烯酰胺凝胶电泳(2D-PAGE)用于分离复杂的蛋白质混合物。该技术的改进极大地提高了分辨率和灵敏度,提供了更具可重复性和全面性的分析。已开发出图像分析软件和机器人仪器,以促进对复杂蛋白质表达模式的比较以及差异表达蛋白质斑点的分离。差异凝胶电泳(DIGE)通过用荧光染料标记不同的蛋白质群体来促进蛋白质表达。同位素编码亲和标签(ICAT)使用质谱进行蛋白质分离,并用不同的同位素标签区分蛋白质群体。尽管过去蛋白质组学主要用于发现,但目前正大力将蛋白质组学技术发展为临床工具。反相蛋白质阵列提供了一种强大的新方法,用于定量评估一组蛋白质的表达水平和激活状态。表面增强激光解吸/电离飞行时间(SELDI-TOF)质谱可快速评估组织或血清中的复杂蛋白质混合物。结合基于人工智能的模式识别算法,这项新兴技术可以生成高度准确的诊断信息。基于质谱的血清蛋白质组学很可能会发展成为用于人类癌症检测和治疗的有用临床工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验