Suppr超能文献

RNA螺旋连接的熵驱动折叠:锤头状核酶的等温滴定量热分析

Entropy-driven folding of an RNA helical junction: an isothermal titration calorimetric analysis of the hammerhead ribozyme.

作者信息

Mikulecky Peter J, Takach Jennifer C, Feig Andrew L

机构信息

Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA.

出版信息

Biochemistry. 2004 May 18;43(19):5870-81. doi: 10.1021/bi0360657.

Abstract

Helical junctions are extremely common motifs in naturally occurring RNAs, but little is known about the thermodynamics that drive their folding. Studies of junction folding face several challenges: non-two-state folding behavior, superposition of secondary and tertiary structural energetics, and drastically opposing enthalpic and entropic contributions to folding. Here we describe a thermodynamic dissection of the folding of the hammerhead ribozyme, a three-way RNA helical junction, by using isothermal titration calorimetry of bimolecular RNA constructs. By using this method, we show that tertiary folding of the hammerhead core occurs with a highly unfavorable enthalpy change, and is therefore entropically driven. Furthermore, the enthalpies and heat capacities of core folding are the same whether supported by monovalent or divalent ions. These properties appear to be general to the core sequence of bimolecular hammerhead constructs. We present a model for the ion-induced folding of the hammerhead core that is similar to those advanced for the folding of much larger RNAs, involving ion-induced collapse to a structured, non-native state accompanied by rearrangement of core residues to produce the native fold. In agreement with previous enzymological and structural studies, our thermodynamic data suggest that the hammerhead structure is stabilized in vitro predominantly by diffusely bound ions. Our approach addresses several significant challenges that accompany the study of junction folding, and should prove useful in defining the thermodynamic determinants of stability in these important RNA motifs.

摘要

螺旋连接在天然存在的RNA中是极其常见的基序,但对于驱动其折叠的热力学却知之甚少。连接折叠的研究面临几个挑战:非二态折叠行为、二级和三级结构能量学的叠加,以及折叠过程中焓和熵贡献的强烈对立。在这里,我们通过对双分子RNA构建体进行等温滴定量热法,描述了锤头状核酶(一种三向RNA螺旋连接)折叠的热力学剖析。通过使用这种方法,我们表明锤头状核心的三级折叠伴随着高度不利的焓变发生,因此是由熵驱动的。此外,无论由单价离子还是二价离子支持,核心折叠的焓和热容都是相同的。这些性质似乎是双分子锤头状构建体核心序列所共有的。我们提出了一个锤头状核心离子诱导折叠的模型,该模型类似于为更大RNA折叠所提出的模型,涉及离子诱导折叠成一个结构化的非天然状态,同时核心残基重排以产生天然折叠。与先前的酶学和结构研究一致,我们的热力学数据表明锤头状结构在体外主要由扩散结合的离子稳定。我们的方法解决了连接折叠研究中伴随的几个重大挑战,并且应该被证明在确定这些重要RNA基序稳定性的热力学决定因素方面是有用的。

相似文献

6
Heat capacity changes in RNA folding: application of perturbation theory to hammerhead ribozyme cold denaturation.
Nucleic Acids Res. 2004 Jul 28;32(13):3967-76. doi: 10.1093/nar/gkh723. Print 2004.
8
Folding and activity of the hammerhead ribozyme.
Chembiochem. 2002 Aug 2;3(8):690-700. doi: 10.1002/1439-7633(20020802)3:8<690::AID-CBIC690>3.0.CO;2-C.
9
Metal ion specificities for folding and cleavage activity in the Schistosoma hammerhead ribozyme.
RNA. 2008 Oct;14(10):2212-22. doi: 10.1261/rna.1010808. Epub 2008 Aug 28.
10
Crystallographic structures of the hammerhead ribozyme: relationship to ribozyme folding and catalysis.
Annu Rev Biophys Biomol Struct. 1998;27:475-502. doi: 10.1146/annurev.biophys.27.1.475.

引用本文的文献

1
Why Does RNA Collapse? The Importance of Water in a Simulation Study of Helix-Junction-Helix Systems.
J Am Chem Soc. 2018 Dec 12;140(49):16948-16951. doi: 10.1021/jacs.8b11111. Epub 2018 Nov 29.
2
Improving RNA nearest neighbor parameters for helices by going beyond the two-state model.
Nucleic Acids Res. 2018 Jun 1;46(10):4883-4892. doi: 10.1093/nar/gky270.
3
Thermodynamics and kinetics of RNA tertiary structure formation in the junctionless hairpin ribozyme.
Biophys Chem. 2017 Sep;228:62-68. doi: 10.1016/j.bpc.2017.07.001. Epub 2017 Jul 8.
5
Visualizing large RNA molecules in solution.
RNA. 2012 Feb;18(2):284-99. doi: 10.1261/rna.027557.111. Epub 2011 Dec 21.
8
Studying RNA-RNA and RNA-protein interactions by isothermal titration calorimetry.
Methods Enzymol. 2009;468:409-22. doi: 10.1016/S0076-6879(09)68019-8.
10
Monitoring of an RNA multistep folding pathway by isothermal titration calorimetry.
Biophys J. 2009 Jan;96(1):132-40. doi: 10.1016/j.bpj.2008.09.033.

本文引用的文献

3
A new angle on heat capacity changes in hydrophobic solvation.
J Am Chem Soc. 2003 Aug 13;125(32):9853-60. doi: 10.1021/ja029796n.
4
Microenvironment analysis and identification of magnesium binding sites in RNA.
Nucleic Acids Res. 2003 Aug 1;31(15):4450-60. doi: 10.1093/nar/gkg471.
5
Single-molecule transition-state analysis of RNA folding.
Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9302-7. doi: 10.1073/pnas.1133280100. Epub 2003 Jul 17.
6
Like-charge attraction between polyelectrolytes induced by counterion charge density waves.
Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8634-7. doi: 10.1073/pnas.1533355100. Epub 2003 Jul 9.
7
Metal ion binding to catalytic RNA molecules.
Curr Opin Struct Biol. 2003 Jun;13(3):317-24. doi: 10.1016/s0959-440x(03)00077-0.
8
A thermodynamic framework for the magnesium-dependent folding of RNA.
Biopolymers. 2003 May;69(1):118-36. doi: 10.1002/bip.10353.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验