Suppr超能文献

用于上臂运动分类的肌电图多变量自回归建模

Multivariate AR modeling of electromyography for the classification of upper arm movements.

作者信息

Hu Xiao, Nenov Valeriy

机构信息

Division of Neurosurgery, The David Geffen School of Medicine, University of California, CHS 74-140, 10833 Le Conte Avenue, Los Angeles, CA 99024, USA.

出版信息

Clin Neurophysiol. 2004 Jun;115(6):1276-87. doi: 10.1016/j.clinph.2003.12.030.

Abstract

OBJECTIVE

We compared the performance of two feature extraction methods for multichannel electromyography (EMG) based arm movement classification. One method was to use a scalar autoregressive model (sAR) for each channel. Another was to model all channels as a whole by a multivariate AR model (mAR).

METHODS

The classified arm movements included elbow flexion, elbow extension, forearm pronation and internal shoulder rotation. Six-channel bipolar EMG signals were collected from four electrodes fixed on the biceps, triceps, brachioradialis and deltoid. Fifteen two-channel and four three-channel configurations were formed out of these six-channel signals for a comparison of different channel combinations. Leave-one-out cross-validation was adopted for evaluating the classification performance using a parametric statistical classifier.

RESULTS

We processed a total of 216 EMG segments obtained from repeated 18 performances by three normal subjects. mAR model based feature set achieved a better classification accuracy than sAR did for each configuration. Moreover, significance of improvement was greater than 0.95 for those configurations which consisted of EMG channels that were close spatially.

CONCLUSIONS

The stronger the cross-correlation among EMG channels the more improvement of classification accuracy one would expect from using a mAR model.

摘要

目的

我们比较了两种基于多通道肌电图(EMG)的手臂运动分类特征提取方法的性能。一种方法是对每个通道使用标量自回归模型(sAR)。另一种方法是通过多变量自回归模型(mAR)将所有通道作为一个整体进行建模。

方法

分类的手臂运动包括肘部屈曲、肘部伸展、前臂旋前和肩部内旋。从固定在肱二头肌、肱三头肌、桡侧腕屈肌和三角肌上的四个电极采集六通道双极肌电信号。从这些六通道信号中形成了15种两通道和4种三通道配置,用于比较不同的通道组合。采用留一法交叉验证,使用参数统计分类器评估分类性能。

结果

我们处理了三名正常受试者重复18次表现获得的总共216个肌电片段。对于每种配置,基于mAR模型的特征集比sAR实现了更好的分类准确率。此外,对于那些由空间上接近的肌电通道组成的配置,改进的显著性大于0.95。

结论

肌电通道之间的互相关性越强,使用mAR模型预期的分类准确率提高就越大。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验