Suppr超能文献

心律失常的物理学

The physics of heart rhythm disorders.

作者信息

Rappel Wouter-Jan

机构信息

Department of Physics, University of California San Diego, La Jolla, CA 92037.

出版信息

Phys Rep. 2022 Sep 19;978:1-45. doi: 10.1016/j.physrep.2022.06.003. Epub 2022 Jul 6.

Abstract

The global burden caused by cardiovascular disease is substantial, with heart disease representing the most common cause of death around the world. There remains a need to develop better mechanistic models of cardiac function in order to combat this health concern. Heart rhythm disorders, or arrhythmias, are one particular type of disease which has been amenable to quantitative investigation. Here we review the application of quantitative methodologies to explore dynamical questions pertaining to arrhythmias. We begin by describing single-cell models of cardiac myocytes, from which two and three dimensional models can be constructed. Special focus is placed on results relating to pattern formation across these spatially-distributed systems, especially the formation of spiral waves of activation. Next, we discuss mechanisms which can lead to the initiation of arrhythmias, focusing on the dynamical state of spatially discordant alternans, and outline proposed mechanisms perpetuating arrhythmias such as fibrillation. We then review experimental and clinical results related to the spatio-temporal mapping of heart rhythm disorders. Finally, we describe treatment options for heart rhythm disorders and demonstrate how statistical physics tools can provide insights into the dynamics of heart rhythm disorders.

摘要

心血管疾病造成的全球负担十分巨大,心脏病是全球最常见的死因。为应对这一健康问题,仍需要开发更好的心脏功能机制模型。心律紊乱,即心律失常,是一种特别适合进行定量研究的疾病类型。在此,我们回顾定量方法在探索与心律失常相关的动力学问题中的应用。我们首先描述心肌细胞的单细胞模型,基于该模型可以构建二维和三维模型。特别关注与这些空间分布系统中模式形成相关的结果,尤其是激活螺旋波的形成。接下来,我们讨论可导致心律失常发作的机制,重点关注空间不协调交替的动态状态,并概述诸如颤动等使心律失常持续存在的拟议机制。然后,我们回顾与心律紊乱的时空映射相关的实验和临床结果。最后,我们描述心律紊乱的治疗选择,并展示统计物理工具如何为心律紊乱的动力学提供见解。

相似文献

1
The physics of heart rhythm disorders.
Phys Rep. 2022 Sep 19;978:1-45. doi: 10.1016/j.physrep.2022.06.003. Epub 2022 Jul 6.
3
Dynamic origin of spatially discordant alternans in cardiac tissue.
Biophys J. 2007 Jan 15;92(2):448-60. doi: 10.1529/biophysj.106.091009. Epub 2006 Oct 27.
4
Dynamical mechanism for subcellular alternans in cardiac myocytes.
Circ Res. 2009 Aug 14;105(4):335-42. doi: 10.1161/CIRCRESAHA.109.197590. Epub 2009 Jul 23.
5
Advanced electrophysiologic mapping systems: an evidence-based analysis.
Ont Health Technol Assess Ser. 2006;6(8):1-101. Epub 2006 Mar 1.
7
From pulsus to pulseless: the saga of cardiac alternans.
Circ Res. 2006 May 26;98(10):1244-53. doi: 10.1161/01.RES.0000224540.97431.f0.
8
Multiscale Modeling of the Mitochondrial Origin of Cardiac Reentrant and Fibrillatory Arrhythmias.
Methods Mol Biol. 2022;2399:247-259. doi: 10.1007/978-1-0716-1831-8_11.
9
Stability of spatially discordant repolarization alternans in cardiac tissue.
Chaos. 2020 Dec;30(12):123141. doi: 10.1063/5.0029209.
10
Nonlinear physics of electrical wave propagation in the heart: a review.
Rep Prog Phys. 2016 Sep;79(9):096601. doi: 10.1088/0034-4885/79/9/096601. Epub 2016 Aug 12.

引用本文的文献

2
How spatiotemporal dynamics can enhance ecosystem resilience.
Proc Natl Acad Sci U S A. 2025 Mar 18;122(11):e2412522122. doi: 10.1073/pnas.2412522122. Epub 2025 Mar 13.
3
Dreaming of electrical waves: Generative modeling of cardiac excitation waves using diffusion models.
APL Mach Learn. 2024 Sep 1;2(3):036113. doi: 10.1063/5.0194391. Epub 2024 Sep 23.
6
Spatially Conserved Spiral Wave Activity During Human Atrial Fibrillation.
Circ Arrhythm Electrophysiol. 2024 Mar;17(3):e012041. doi: 10.1161/CIRCEP.123.012041. Epub 2024 Feb 13.

本文引用的文献

1
Stochastic termination of spiral wave dynamics in cardiac tissue.
Front Netw Physiol. 2022 Jan;2. doi: 10.3389/fnetp.2022.809532. Epub 2022 Jan 26.
2
Intermittent trapping of spiral waves in a cardiac model.
Phys Rev E. 2022 Jan;105(1-1):014404. doi: 10.1103/PhysRevE.105.014404.
3
Electrical Stimulation for Low-Energy Termination of Cardiac Arrhythmias: a Review.
Cardiovasc Drugs Ther. 2023 Apr;37(2):323-340. doi: 10.1007/s10557-021-07236-5. Epub 2021 Aug 7.
4
The openCARP simulation environment for cardiac electrophysiology.
Comput Methods Programs Biomed. 2021 Sep;208:106223. doi: 10.1016/j.cmpb.2021.106223. Epub 2021 Jun 8.
5
Machine Learning in Arrhythmia and Electrophysiology.
Circ Res. 2021 Feb 19;128(4):544-566. doi: 10.1161/CIRCRESAHA.120.317872. Epub 2021 Feb 18.
6
Electrical Substrate Ablation for Refractory Ventricular Fibrillation: Results of the AVATAR Study.
Circ Arrhythm Electrophysiol. 2021 Mar;14(3):e008868. doi: 10.1161/CIRCEP.120.008868. Epub 2021 Feb 7.
7
Anisotropic Cardiac Conduction.
Arrhythm Electrophysiol Rev. 2020 Dec;9(4):202-210. doi: 10.15420/aer.2020.04.
9
Machine Learned Cellular Phenotypes in Cardiomyopathy Predict Sudden Death.
Circ Res. 2021 Jan 22;128(2):172-184. doi: 10.1161/CIRCRESAHA.120.317345. Epub 2020 Nov 10.
10
Paracrine signalling by cardiac calcitonin controls atrial fibrogenesis and arrhythmia.
Nature. 2020 Nov;587(7834):460-465. doi: 10.1038/s41586-020-2890-8. Epub 2020 Nov 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验