Suppr超能文献

使用可微物理学和深度学习进行同步数据同化和心脏电生理模型校正。

Simultaneous data assimilation and cardiac electrophysiology model correction using differentiable physics and deep learning.

作者信息

Kashtanova Victoriya, Pop Mihaela, Ayed Ibrahim, Gallinari Patrick, Sermesant Maxime

机构信息

Inria Université Côte d'Azur, Nice, France.

3IA Côte d'Azur, Sophia Antipolis, France.

出版信息

Interface Focus. 2023 Dec 15;13(6):20230043. doi: 10.1098/rsfs.2023.0043. eCollection 2023 Dec 6.

Abstract

Modelling complex systems, like the human heart, has made great progress over the last decades. Patient-specific models, called 'digital twins', can aid in diagnosing arrhythmias and personalizing treatments. However, building highly accurate predictive heart models requires a delicate balance between mathematical complexity, parameterization from measurements and validation of predictions. Cardiac electrophysiology (EP) models range from complex biophysical models to simplified phenomenological models. Complex models are accurate but computationally intensive and challenging to parameterize, while simplified models are computationally efficient but less realistic. In this paper, we propose a hybrid approach by leveraging deep learning to complete a simplified cardiac model from data. Our novel framework has two components, decomposing the dynamics into a physics based and a data-driven term. This construction allows our framework to learn from data of different complexity, while simultaneously estimating model parameters. First, using data, we demonstrate that this framework can reproduce the complex dynamics of cardiac transmembrane potential even in the presence of noise in the data. Second, using optical data of action potentials (APs), we demonstrate that our framework can identify key physical parameters for anatomical zones with different electrical properties, as well as to reproduce the AP wave characteristics obtained from various pacing locations. Our physics-based data-driven approach may improve cardiac EP modelling by providing a robust biophysical tool for predictions.

摘要

在过去几十年中,对诸如人类心脏这样的复杂系统进行建模取得了巨大进展。针对特定患者的模型,即所谓的“数字孪生”,有助于心律失常的诊断和治疗的个性化。然而,构建高度准确的心脏预测模型需要在数学复杂性、基于测量的参数化以及预测验证之间实现微妙的平衡。心脏电生理学(EP)模型范围从复杂的生物物理模型到简化的唯象模型。复杂模型准确但计算量大且参数化具有挑战性,而简化模型计算效率高但不太现实。在本文中,我们提出了一种混合方法,通过利用深度学习从数据中完成一个简化的心脏模型。我们的新框架有两个组成部分,将动力学分解为基于物理的项和数据驱动的项。这种构建方式使我们的框架能够从不同复杂性的数据中学习,同时估计模型参数。首先,使用数据,我们证明即使在数据存在噪声的情况下,该框架也能重现心脏跨膜电位的复杂动力学。其次,使用动作电位(AP)的光学数据,我们证明我们的框架可以识别具有不同电学特性的解剖区域的关键物理参数,以及重现从各种起搏位置获得的AP波特征。我们基于物理的数据驱动方法可能通过提供一个强大的生物物理预测工具来改进心脏EP建模。

相似文献

1
Simultaneous data assimilation and cardiac electrophysiology model correction using differentiable physics and deep learning.
Interface Focus. 2023 Dec 15;13(6):20230043. doi: 10.1098/rsfs.2023.0043. eCollection 2023 Dec 6.
2
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
3
lifex-ep: a robust and efficient software for cardiac electrophysiology simulations.
BMC Bioinformatics. 2023 Oct 13;24(1):389. doi: 10.1186/s12859-023-05513-8.
4
Physics-constrained deep active learning for spatiotemporal modeling of cardiac electrodynamics.
Comput Biol Med. 2022 Jul;146:105586. doi: 10.1016/j.compbiomed.2022.105586. Epub 2022 May 10.
5
Coupled personalization of cardiac electrophysiology models for prediction of ischaemic ventricular tachycardia.
Interface Focus. 2011 Jun 6;1(3):396-407. doi: 10.1098/rsfs.2010.0041. Epub 2011 Mar 30.
6
EP-PINNs: Cardiac Electrophysiology Characterisation Using Physics-Informed Neural Networks.
Front Cardiovasc Med. 2022 Feb 3;8:768419. doi: 10.3389/fcvm.2021.768419. eCollection 2021.
7
Fast creation of data-driven low-order predictive cardiac tissue excitation models from recorded activation patterns.
Comput Biol Med. 2024 Feb;169:107949. doi: 10.1016/j.compbiomed.2024.107949. Epub 2024 Jan 3.
10
Toward a physics-guided machine learning approach for predicting chaotic systems dynamics.
Front Big Data. 2025 Jan 17;7:1506443. doi: 10.3389/fdata.2024.1506443. eCollection 2024.

引用本文的文献

1
Cardiovascular care with digital twin technology in the era of generative artificial intelligence.
Eur Heart J. 2024 Sep 26;45(45):4808-21. doi: 10.1093/eurheartj/ehae619.

本文引用的文献

1
Editorial: Diagnosis, monitoring, and treatment of heart rhythm: new insights and novel computational methods.
Front Physiol. 2023 Aug 16;14:1272377. doi: 10.3389/fphys.2023.1272377. eCollection 2023.
2
From evidence-based medicine to digital twin technology for predicting ventricular tachycardia in ischaemic cardiomyopathy.
J R Soc Interface. 2022 Sep;19(194):20220317. doi: 10.1098/rsif.2022.0317. Epub 2022 Sep 21.
3
EP-PINNs: Cardiac Electrophysiology Characterisation Using Physics-Informed Neural Networks.
Front Cardiovasc Med. 2022 Feb 3;8:768419. doi: 10.3389/fcvm.2021.768419. eCollection 2021.
4
5
An audit of uncertainty in multi-scale cardiac electrophysiology models.
Philos Trans A Math Phys Eng Sci. 2020 Jun 12;378(2173):20190335. doi: 10.1098/rsta.2019.0335. Epub 2020 May 25.
6
Three-dimensional cardiac computational modelling: methods, features and applications.
Biomed Eng Online. 2015 Apr 17;14:35. doi: 10.1186/s12938-015-0033-5.
7
Coupled personalization of cardiac electrophysiology models for prediction of ischaemic ventricular tachycardia.
Interface Focus. 2011 Jun 6;1(3):396-407. doi: 10.1098/rsfs.2010.0041. Epub 2011 Mar 30.
9
Impulses and Physiological States in Theoretical Models of Nerve Membrane.
Biophys J. 1961 Jul;1(6):445-66. doi: 10.1016/s0006-3495(61)86902-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验