Suppr超能文献

使用可微物理学和深度学习进行同步数据同化和心脏电生理模型校正。

Simultaneous data assimilation and cardiac electrophysiology model correction using differentiable physics and deep learning.

作者信息

Kashtanova Victoriya, Pop Mihaela, Ayed Ibrahim, Gallinari Patrick, Sermesant Maxime

机构信息

Inria Université Côte d'Azur, Nice, France.

3IA Côte d'Azur, Sophia Antipolis, France.

出版信息

Interface Focus. 2023 Dec 15;13(6):20230043. doi: 10.1098/rsfs.2023.0043. eCollection 2023 Dec 6.

Abstract

Modelling complex systems, like the human heart, has made great progress over the last decades. Patient-specific models, called 'digital twins', can aid in diagnosing arrhythmias and personalizing treatments. However, building highly accurate predictive heart models requires a delicate balance between mathematical complexity, parameterization from measurements and validation of predictions. Cardiac electrophysiology (EP) models range from complex biophysical models to simplified phenomenological models. Complex models are accurate but computationally intensive and challenging to parameterize, while simplified models are computationally efficient but less realistic. In this paper, we propose a hybrid approach by leveraging deep learning to complete a simplified cardiac model from data. Our novel framework has two components, decomposing the dynamics into a physics based and a data-driven term. This construction allows our framework to learn from data of different complexity, while simultaneously estimating model parameters. First, using data, we demonstrate that this framework can reproduce the complex dynamics of cardiac transmembrane potential even in the presence of noise in the data. Second, using optical data of action potentials (APs), we demonstrate that our framework can identify key physical parameters for anatomical zones with different electrical properties, as well as to reproduce the AP wave characteristics obtained from various pacing locations. Our physics-based data-driven approach may improve cardiac EP modelling by providing a robust biophysical tool for predictions.

摘要

在过去几十年中,对诸如人类心脏这样的复杂系统进行建模取得了巨大进展。针对特定患者的模型,即所谓的“数字孪生”,有助于心律失常的诊断和治疗的个性化。然而,构建高度准确的心脏预测模型需要在数学复杂性、基于测量的参数化以及预测验证之间实现微妙的平衡。心脏电生理学(EP)模型范围从复杂的生物物理模型到简化的唯象模型。复杂模型准确但计算量大且参数化具有挑战性,而简化模型计算效率高但不太现实。在本文中,我们提出了一种混合方法,通过利用深度学习从数据中完成一个简化的心脏模型。我们的新框架有两个组成部分,将动力学分解为基于物理的项和数据驱动的项。这种构建方式使我们的框架能够从不同复杂性的数据中学习,同时估计模型参数。首先,使用数据,我们证明即使在数据存在噪声的情况下,该框架也能重现心脏跨膜电位的复杂动力学。其次,使用动作电位(AP)的光学数据,我们证明我们的框架可以识别具有不同电学特性的解剖区域的关键物理参数,以及重现从各种起搏位置获得的AP波特征。我们基于物理的数据驱动方法可能通过提供一个强大的生物物理预测工具来改进心脏EP建模。

相似文献

本文引用的文献

5
An audit of uncertainty in multi-scale cardiac electrophysiology models.多尺度心脏电生理学模型不确定性的审核。
Philos Trans A Math Phys Eng Sci. 2020 Jun 12;378(2173):20190335. doi: 10.1098/rsta.2019.0335. Epub 2020 May 25.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验