Suppr超能文献

乳腺超声图像中癌症的计算机化检测与分类

Computerized detection and classification of cancer on breast ultrasound.

作者信息

Drukker Karen, Giger Maryellen L, Vyborny Carl J, Mendelson Ellen B

机构信息

Department of Radiology MC2026, University of Chicago, 5841 S. Maryland Ave, Chicago, IL 60637, USA.

出版信息

Acad Radiol. 2004 May;11(5):526-35. doi: 10.1016/S1076-6332(03)00723-2.

Abstract

RATIONALE AND OBJECTIVES

To develop and evaluate a two-stage computerized method that first detects suspicious regions on ultrasound images, and subsequently distinguishes among different lesion types.

MATERIALS AND METHODS

The first stage of detecting potential lesions was based on expected lesion shape and margin characteristics. After the detection stage, all candidate lesions were classified by a Bayesian neural net based on computer-extracted lesion features. Two separate tasks were performed and evaluated at the classification stage: the first classification task was the distinction between all actual lesions and false-positive detections; the second classification task was the distinction between actual cancer and all other detected lesion candidates (including false-positive detections). The neural nets were trained on a database of 400 cases (757 images), consisting of complex cysts and benign and malignant lesions, and tested on an independent database of 458 cases (1,740 images including 578 normal images).

RESULTS

In the distinction between all actual lesions and false-positive detections, Az values of 0.94 and 0.91 were obtained with the training and testing data sets, respectively. Sensitivity by patient of 90% at 0.45 false-positive detections per image was achieved for this detection-plus-classification scheme for the testing data set. Distinguishing cancer from all other detections (false-positives plus all benign lesions) proved to be more challenging, and Az values of 0.87 and 0.81 were obtained during training and testing, respectively. Sensitivity by patient of 100% at 0.43 false-positive malignancies per image was achieved in the detection and classification of cancerous lesions for the testing dataset.

CONCLUSION

The results show promising performance of the computerized lesion detection and classification method, and indicate the potential of such a system for clinical breast ultrasound.

摘要

原理与目的

开发并评估一种两阶段计算机化方法,该方法首先在超声图像上检测可疑区域,随后区分不同的病变类型。

材料与方法

检测潜在病变的第一阶段基于预期的病变形状和边缘特征。在检测阶段之后,所有候选病变通过基于计算机提取的病变特征的贝叶斯神经网络进行分类。在分类阶段执行并评估了两项独立任务:第一项分类任务是区分所有实际病变与假阳性检测;第二项分类任务是区分实际癌症与所有其他检测到的病变候选者(包括假阳性检测)。神经网络在一个由400例(757幅图像)组成的数据库上进行训练,该数据库包括复杂囊肿以及良性和恶性病变,并在一个由458例(1740幅图像,包括578幅正常图像)组成的独立数据库上进行测试。

结果

在区分所有实际病变与假阳性检测时,训练数据集和测试数据集的Az值分别为0.94和0.91。对于测试数据集的这种检测加分类方案,在每幅图像0.45例假阳性检测的情况下,患者敏感度达到了90%。将癌症与所有其他检测结果(假阳性加上所有良性病变)区分开来被证明更具挑战性,训练和测试期间的Az值分别为0.87和0.81。在测试数据集的癌性病变检测和分类中,在每幅图像0.43例假阳性恶性病变的情况下,患者敏感度达到了100%。

结论

结果显示了计算机化病变检测和分类方法的良好性能,并表明了这种系统在临床乳腺超声中的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验