Prabusankarlal Kadayanallur Mahadevan, Thirumoorthy Palanisamy, Manavalan Radhakrishnan
Bharathiar University, Research and Development Centre, Department of Electronics and Instrumentation, Coimbatore, India.
K.S. Rangasamy College of Arts and Science (Autonomous), Department of Electronics and Communication, Tiruchengode, India.
J Med Imaging (Bellingham). 2017 Apr;4(2):024507. doi: 10.1117/1.JMI.4.2.024507. Epub 2017 Jun 16.
A method using rough set feature selection and extreme learning machine (ELM) whose learning strategy and hidden node parameters are optimized by self-adaptive differential evolution (SaDE) algorithm for classification of breast masses is investigated. A pathologically proven database of 140 breast ultrasound images, including 80 benign and 60 malignant, is used for this study. A fast nonlocal means algorithm is applied for speckle noise removal, and multiresolution analysis of undecimated discrete wavelet transform is used for accurate segmentation of breast lesions. A total of 34 features, including 29 textural and five morphological, are applied to a [Formula: see text]-fold cross-validation scheme, in which more relevant features are selected by quick-reduct algorithm, and the breast masses are discriminated into benign or malignant using SaDE-ELM classifier. The diagnosis accuracy of the system is assessed using parameters, such as accuracy (Ac), sensitivity (Se), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV), Matthew's correlation coefficient (MCC), and area ([Formula: see text]) under receiver operating characteristics curve. The performance of the proposed system is also compared with other classifiers, such as support vector machine and ELM. The results indicated that the proposed SaDE algorithm has superior performance with [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] compared to other classifiers.
研究了一种使用粗糙集特征选择和极限学习机(ELM)的方法,该方法通过自适应差分进化(SaDE)算法对学习策略和隐藏节点参数进行优化,用于乳腺肿块的分类。本研究使用了一个包含140幅乳腺超声图像的病理证实数据库,其中80例为良性,60例为恶性。应用快速非局部均值算法去除斑点噪声,并使用非抽样离散小波变换的多分辨率分析对乳腺病变进行精确分割。总共34个特征,包括29个纹理特征和5个形态特征,应用于[公式:见原文]折交叉验证方案,其中通过快速约简算法选择更相关的特征,并使用SaDE-ELM分类器将乳腺肿块区分为良性或恶性。使用诸如准确率(Ac)、灵敏度(Se)、特异性(Sp)、阳性预测值(PPV)、阴性预测值(NPV)、马修斯相关系数(MCC)和受试者工作特征曲线下的面积([公式:见原文])等参数评估系统的诊断准确性。还将所提出系统的性能与其他分类器,如支持向量机和ELM进行了比较。结果表明,与其他分类器相比,所提出的SaDE算法在[公式:见原文]、[公式:见原文]、[公式:见原文]、[公式:见原文]、[公式:见原文]、[公式:见原文]和[公式:见原文]方面具有卓越的性能。