Suppr超能文献

FepA对儿茶酚铁的识别。

Recognition of ferric catecholates by FepA.

作者信息

Annamalai Rajasekaran, Jin Bo, Cao Zhenghua, Newton Salete M C, Klebba Phillip E

机构信息

Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA.

出版信息

J Bacteriol. 2004 Jun;186(11):3578-89. doi: 10.1128/JB.186.11.3578-3589.2004.

Abstract

Escherichia coli FepA transports certain catecholate ferric siderophores, but not others, nor any noncatecholate compounds. Direct binding and competition experiments demonstrated that this selectivity originates during the adsorption stage. The synthetic tricatecholate Fe-TRENCAM bound to FepA with 50- to 100-fold-lower affinity than Fe-enterobactin (FeEnt), despite an identical metal center, and Fe-corynebactin only bound at much higher concentrations. Neither Fe-agrobactin nor ferrichrome bound at all, even at concentrations 10(6)-fold above the Kd. Thus, FepA only adsorbs catecholate iron complexes, and it selects FeEnt among even its close homologs. We used alanine scanning mutagenesis to study the contributions of surface aromatic residues to FeEnt recognition. Although not apparent from crystallography, aromatic residues in L3, L5, L7, L8, and L10 affected FepA's interaction with FeEnt. Among 10 substitutions that eliminated aromatic residues, Kd increased as much as 20-fold (Y481A and Y638A) and Km increased as much as 400-fold (Y478), showing the importance of aromaticity around the pore entrance. Although many mutations equally reduced binding and transport, others caused greater deficiencies in the latter. Y638A and Y478A increased Km 10- and 200-fold more, respectively, than Kd. N-domain loop deletions created the same phenotype: Delta60-67 (in NL1) and Delta98-105 (in NL2) increased Kd 10- to 20-fold but raised Km 500- to 700-fold. W101A (in NL2) had little effect on Kd but increased Km 1,000-fold. These data suggested that the primary role of the N terminus is in ligand uptake. Fluorescence and radioisotopic experiments showed biphasic release of FeEnt from FepA. In spectroscopic determinations, k(off1) was 0.03/s and k(off2) was 0.003/s. However, FepAY272AF329A did not manifest the rapid dissociation phase, corroborating the role of aromatic residues in the initial binding of FeEnt. Thus, the beta-barrel loops contain the principal ligand recognition determinants, and the N-domain loops perform a role in ligand transport.

摘要

大肠杆菌FepA能转运某些儿茶酚型铁载体,但不能转运其他类型的铁载体,也不能转运任何非儿茶酚类化合物。直接结合和竞争实验表明,这种选择性源于吸附阶段。尽管金属中心相同,但合成的三聚儿茶酚铁-TRENCAM与FepA的结合亲和力比铁肠菌素(FeEnt)低50至100倍,而铁棒曲菌素只有在浓度高得多时才会结合。即使浓度比解离常数(Kd)高10^6倍,铁农杆菌素和铁色素也根本不结合。因此,FepA只吸附儿茶酚型铁配合物,甚至在其紧密同源物中也选择FeEnt。我们使用丙氨酸扫描诱变来研究表面芳香族残基对FeEnt识别的贡献。尽管从晶体学上看并不明显,但L3、L5、L7、L8和L10中的芳香族残基影响了FepA与FeEnt的相互作用。在消除芳香族残基的10个替换中,Kd增加了多达20倍(Y481A和Y638A),Km增加了多达400倍(Y478),这表明孔入口周围芳香性的重要性。尽管许多突变同样降低了结合和转运能力,但其他突变在后者方面造成了更大的缺陷。Y638A和Y(478)A分别使Km比Kd增加了10倍和200倍。N结构域环缺失产生了相同的表型:Δ60 - 67(在NL1中)和Δ98 - 105(在NL2中)使Kd增加了10至20倍,但使Km增加了500至700倍。W101A(在NL2中)对Kd影响不大,但使Km增加了1000倍。这些数据表明N末端的主要作用是在配体摄取方面。荧光和放射性同位素实验表明FeEnt从FepA中呈双相释放。在光谱测定中,解离速率常数k(off1)为0.03/秒,k(off2)为0.003/秒。然而,FepAY272AF329A没有表现出快速解离阶段,这证实了芳香族残基在FeEnt初始结合中的作用。因此,β桶环包含主要的配体识别决定因素,而N结构域环在配体转运中发挥作用。

相似文献

1
Recognition of ferric catecholates by FepA.
J Bacteriol. 2004 Jun;186(11):3578-89. doi: 10.1128/JB.186.11.3578-3589.2004.
2
Concerted loop motion triggers induced fit of FepA to ferric enterobactin.
J Gen Physiol. 2014 Jul;144(1):71-80. doi: 10.1085/jgp.201311159.
3
Conformational rearrangements in the N-domain of FepA during ferric enterobactin transport.
J Biol Chem. 2020 Apr 10;295(15):4974-4984. doi: 10.1074/jbc.RA119.011850. Epub 2020 Feb 25.
4
Aromatic components of two ferric enterobactin binding sites in Escherichia coli FepA.
Mol Microbiol. 2000 Sep;37(6):1306-17. doi: 10.1046/j.1365-2958.2000.02093.x.
5
Siderophore-mediated iron acquisition by .
J Bacteriol. 2024 May 23;206(5):e0002424. doi: 10.1128/jb.00024-24. Epub 2024 Apr 9.
6
Selectivity of ferric enterobactin binding and cooperativity of transport in gram-negative bacteria.
J Bacteriol. 1998 Dec;180(24):6689-96. doi: 10.1128/JB.180.24.6689-6696.1998.
7
Double mutagenesis of a positive charge cluster in the ligand-binding site of the ferric enterobactin receptor, FepA.
Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4560-5. doi: 10.1073/pnas.94.9.4560.
8
Effect of loop deletions on the binding and transport of ferric enterobactin by FepA.
Mol Microbiol. 1999 Jun;32(6):1153-65. doi: 10.1046/j.1365-2958.1999.01424.x.
9
Specificity and mechanism of TonB-dependent ferric catecholate uptake by Fiu.
Front Microbiol. 2024 Mar 27;15:1355253. doi: 10.3389/fmicb.2024.1355253. eCollection 2024.
10
Biphasic binding kinetics between FepA and its ligands.
J Biol Chem. 1997 Aug 29;272(35):21950-5. doi: 10.1074/jbc.272.35.21950.

引用本文的文献

1
Structural basis of iron piracy by human gut .
bioRxiv. 2025 Aug 24:2024.04.15.589501. doi: 10.1101/2024.04.15.589501.
2
Re-evaluation of the -Glucosyltransferase IroB Illuminates Its Ability to -Glucosylate Non-native Triscatecholate Enterobactin Mimics.
Biochemistry. 2025 Jan 7;64(1):224-237. doi: 10.1021/acs.biochem.4c00581. Epub 2024 Dec 24.
3
Pyoverdine-antibiotic combination treatment: its efficacy and effects on resistance evolution in .
Microlife. 2024 Oct 15;5:uqae021. doi: 10.1093/femsml/uqae021. eCollection 2024.
4
Siderophore-mediated iron acquisition by .
J Bacteriol. 2024 May 23;206(5):e0002424. doi: 10.1128/jb.00024-24. Epub 2024 Apr 9.
6
General Overview of : Epidemiology and the Role of Siderophores in Its Pathogenicity.
Biology (Basel). 2024 Jan 27;13(2):78. doi: 10.3390/biology13020078.
7
Chaperone-assisted cryo-EM structure of P. aeruginosa PhuR reveals molecular basis for heme binding.
Structure. 2024 Apr 4;32(4):411-423.e6. doi: 10.1016/j.str.2024.01.007. Epub 2024 Feb 6.
8
Chaperone-assisted cryo-EM structure of PhuR reveals molecular basis for heme binding.
bioRxiv. 2024 Aug 5:2023.08.01.551527. doi: 10.1101/2023.08.01.551527.

本文引用的文献

1
Three paradoxes of ferric enterobactin uptake.
Front Biosci. 2003 Sep 1;8:s1422-36. doi: 10.2741/1233.
2
Enterobactin: an archetype for microbial iron transport.
Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):3584-8. doi: 10.1073/pnas.0630018100. Epub 2003 Mar 24.
3
Substrate-induced transmembrane signaling in the cobalamin transporter BtuB.
Nat Struct Biol. 2003 May;10(5):394-401. doi: 10.1038/nsb914.
5
Spectroscopic observations of ferric enterobactin transport.
J Biol Chem. 2003 Jan 10;278(2):1022-8. doi: 10.1074/jbc.M210360200. Epub 2002 Oct 29.
6
TonB-dependent receptors-structural perspectives.
Biochim Biophys Acta. 2002 Oct 11;1565(2):318-32. doi: 10.1016/s0005-2736(02)00578-3.
7
Surface loop motion in FepA.
J Bacteriol. 2002 Sep;184(17):4906-11. doi: 10.1128/JB.184.17.4906-4911.2002.
8
Structural basis of gating by the outer membrane transporter FecA.
Science. 2002 Mar 1;295(5560):1715-9. doi: 10.1126/science.1067313.
9
Active transport of an antibiotic rifamycin derivative by the outer-membrane protein FhuA.
Structure. 2001 Aug;9(8):707-16. doi: 10.1016/s0969-2126(01)00631-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验