Flanders Kathleen C
Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, NIH, Bethesda, MD 20892-5055, USA.
Int J Exp Pathol. 2004 Apr;85(2):47-64. doi: 10.1111/j.0959-9673.2004.00377.x.
Transforming growth factor-beta (TGF-beta) plays a central role in fibrosis, contributing to the influx and activation of inflammatory cells, the epithelial to mesenchymal transdifferentiation (EMT) of cells and the influx of fibroblasts and their subsequent elaboration of extracellular matrix. TGF-beta signals through transmembrane receptor serine/threonine kinases to activate novel signalling intermediates called Smad proteins, which modulate the transcription of target genes. The use of mice with a targeted deletion of Smad3, one of the two homologous proteins which signals from TGF-beta/activin, shows that most of the pro-fibrotic activities of TGF-beta are mediated by Smad3. Smad3 null inflammatory cells and fibroblasts do not respond to the chemotactic effects of TGF-beta and do not autoinduce TGF-beta. The loss of Smad3 also interferes with TGF-beta-mediated induction of EMT and genes for collagens, plasminogen activator inhibitor-1 and the tissue inhibitor of metalloprotease-1. Smad3 null mice are resistant to radiation-induced cutaneous fibrosis, bleomycin-induced pulmonary fibrosis, carbon tetrachloride-induced hepatic fibrosis as well as glomerular fibrosis induced by induction of type 1 diabetes with streptozotocin. In fibrotic conditions that are induced by EMT, such as proliferative vitreoretinopathy, ocular capsule injury and glomerulosclerosis resulting from unilateral ureteral obstruction, Smad3 null mice also show an abrogated fibrotic response. Animal models of scleroderma, cystic fibrosis and cirrhosis implicate involvement of Smad3 in the observed fibrosis. Additionally, inhibition of Smad3 by overexpression of the inhibitory Smad7 protein or by treatment with the small molecule, halofuginone, dramatically reduces responses in animal models of kidney, lung, liver and radiation-induced fibrosis. Small moleucule inhibitors of Smad3 may have tremendous clinical potential in the treatment of pathological fibrotic diseases.
转化生长因子-β(TGF-β)在纤维化过程中起核心作用,促使炎症细胞流入并激活,导致细胞发生上皮-间质转化(EMT),使成纤维细胞流入并随后合成细胞外基质。TGF-β通过跨膜受体丝氨酸/苏氨酸激酶发出信号,激活名为Smad蛋白的新型信号中间体,后者可调节靶基因的转录。对TGF-β/激活素信号传导的两种同源蛋白之一Smad3进行靶向缺失的小鼠研究表明,TGF-β的大多数促纤维化活性由Smad3介导。Smad3缺失的炎症细胞和成纤维细胞对TGF-β的趋化作用无反应,也不会自诱导TGF-β。Smad3的缺失还会干扰TGF-β介导的EMT诱导以及胶原蛋白、纤溶酶原激活物抑制剂-1和金属蛋白酶组织抑制剂-1基因的表达。Smad3基因敲除小鼠对辐射诱导的皮肤纤维化、博来霉素诱导的肺纤维化、四氯化碳诱导的肝纤维化以及链脲佐菌素诱导的1型糖尿病所致肾小球纤维化具有抗性。在由EMT诱导的纤维化疾病中,如增殖性玻璃体视网膜病变、眼囊损伤和单侧输尿管梗阻导致的肾小球硬化,Smad3基因敲除小鼠也表现出纤维化反应减弱。硬皮病、囊性纤维化和肝硬化的动物模型表明Smad3参与了所观察到的纤维化过程。此外,通过抑制性Smad7蛋白的过表达或用小分子卤夫酮处理来抑制Smad3,可显著降低肾脏、肺、肝脏和辐射诱导纤维化动物模型中的反应。Smad3的小分子抑制剂在治疗病理性纤维化疾病方面可能具有巨大的临床潜力。