Yew Wen Shan, Wise Eric L, Rayment Ivan, Gerlt John A
Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA.
Biochemistry. 2004 Jun 1;43(21):6427-37. doi: 10.1021/bi049741t.
3-Keto-L-gulonate 6-phosphate decarboxylase (KGPDC) and orotidine 5'-monophosphate decarboxylase (OMPDC) are homologous enzymes that share the (beta/alpha)(8)-fold but catalyze mechanistically distinct reactions [Wise, E., Yew, W. S., Babbitt, P. C., Gerlt, J. A., and Rayment, I. (2002) Biochemistry 41, 3861-3869]. KGPDC catalyzes the Mg(2+)-dependent decarboxylation of 3-keto-L-gulonate 6-phosphate, an intermediate in the catabolic pathway of L-ascorbate utilization by Escherichia coli K-12 [Yew, W. S., and Gerlt, J. A. (2002) J. Bacteriol. 184, 302-306]. OMPDC catalyzes a metal ion-independent reaction that likely proceeds without a vinyl anion intermediate [Appleby, T. C., Kinsland, C., Begley, T., and Ealick, S. E. (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 2005-2010], although the mechanistic details are uncertain. An active site Lys located at the end of the third beta-strand in OMPDC has been proposed to be the general acid that delivers a solvent-derived proton to the UMP product; the active site of KGPDC contains a homologous Lys residue (Lys64). Herein, we report investigations of the KGPDC-catalyzed reaction that are consistent with a mechanism involving a Mg(2+)-stabilized cis-enediolate intermediate [Wise, E. L., Yew, W. S., Gerlt, J. A., and Rayment, I. (2003) Biochemistry 42, 12133-12142] and implicate waters proximal to His136 and Arg139, both located at the end of the sixth beta-strand, as the general acids that deliver a solvent-derived proton to the intermediate to form the L-xylulose 5-phosphate product. On the basis of our mechanistic investigations, Lys64 stabilizes the cis-enediolate intermediate by forming hydrogen bonds to both O1 and O2 of the intermediate. Thus, although the active sites of OMPDC and KGPDC contain a conserved Lys at the end of the third beta-strand, their roles in catalysis are not conserved. Furthermore, a conserved Asp at the end of the third beta-strand in OMPDC participates in a hydrogen-bonded network that positions the acidic Lys residue; in the active site of KGPDC, the homologous Asp67 participates in stabilization of the enediolate intermediate and enforces a cis geometry. We conclude that the conserved active site residues perform different functions in the OMPDC- and KGPDC-catalyzed reactions, so the mechanisms of their reactions are completely distinct. This study further highlights the opportunistic nature of divergent evolution in conscripting the active site of a progenitor to catalyze a mechanistically distinct reaction.
3-酮基-L-古洛糖酸6-磷酸脱羧酶(KGPDC)和乳清苷5'-单磷酸脱羧酶(OMPDC)是同源酶,它们具有(β/α)8折叠结构,但催化机制不同的反应[怀斯,E.,尤,W. S.,巴比特,P. C.,格尔特,J. A.,和雷门特,I.(2002年)《生物化学》41,3861 - 3869]。KGPDC催化3-酮基-L-古洛糖酸6-磷酸的Mg2+依赖性脱羧反应,3-酮基-L-古洛糖酸6-磷酸是大肠杆菌K-12利用L-抗坏血酸分解代谢途径中的一个中间体[尤,W. S.,和格尔特,J. A.(2002年)《细菌学杂志》184,302 - 306]。OMPDC催化一个不依赖金属离子的反应,该反应可能在没有乙烯基阴离子中间体的情况下进行[阿普尔比,T. C.,金斯兰,C.,贝格利,T.,和伊里克,S. E.(2000年)《美国国家科学院院刊》97,2005 - 2010],尽管其机制细节尚不确定。有人提出,位于OMPDC中第三条β链末端的活性位点赖氨酸是将溶剂衍生的质子传递给UMP产物的通用酸;KGPDC的活性位点包含一个同源的赖氨酸残基(赖氨酸64)。在此,我们报告了对KGPDC催化反应的研究,这些研究与涉及Mg2+稳定的顺式烯二醇中间体的机制一致[怀斯,E. L.,尤,W. S.,格尔特,J. A.,和雷门特,I.(2003年)《生物化学》42,12133 - 12142],并表明位于第六条β链末端的His136和Arg139附近的水是将溶剂衍生的质子传递给中间体以形成5-磷酸-L-木酮糖产物的通用酸。基于我们的机制研究,赖氨酸64通过与中间体的O1和O2形成氢键来稳定顺式烯二醇中间体。因此,尽管OMPDC和KGPDC的活性位点在第三条β链末端都含有一个保守的赖氨酸,但它们在催化中的作用并不保守。此外,OMPDC中第三条β链末端的一个保守天冬氨酸参与了一个氢键网络,该网络定位了酸性赖氨酸残基;在KGPDC的活性位点中,同源的天冬氨酸67参与了烯二醇中间体的稳定并强制形成顺式构型。我们得出结论,保守的活性位点残基在OMPDC和KGPDC催化的反应中执行不同的功能,因此它们的反应机制完全不同。这项研究进一步突出了在征用祖先进化出的活性位点来催化机制不同的反应时,趋异进化的机会主义性质。