Wise Eric L, Yew Wen Shan, Gerlt John A, Rayment Ivan
Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA.
Biochemistry. 2003 Oct 28;42(42):12133-42. doi: 10.1021/bi0348819.
3-Keto-L-gulonate 6-phosphate decarboxylase (KGPDC) and orotidine 5'-phosphate decarboxylase (OMPDC) are members of an enzyme suprafamily, the OMPDC suprafamily, because they are homologous enzymes that catalyze mechanistically distinct reactions using different substrates. KGPDC catalyzes the Mg(2+) ion-dependent decarboxylation of 3-keto-L-gulonate 6-phosphate to yield L-xylulose 5-phosphate and CO(2); OMPDC catalyzes the metal ion-independent decarboxylation of OMP to UMP and CO(2). Structural studies have shown that KGPDC and OMPDC share several strictly conserved active site residues that are used differently by each enzyme to catalyze their mechanistically distinct reactions. Although the mechanism of the KGPDC-catalyzed reaction has yet to be elucidated, it is thought to proceed via a Mg(2+) ion-stabilized 1,2-enediolate intermediate. Here we report the crystal structures of KGPDC complexed with L-gulonate 6-phosphate, L-threonohydroxamate 4-phosphate, and L-xylitol 5-phosphate, analogues of the substrate, enediolate intermediate, and product, as well as with the product, L-xylulose 5-phosphate, at 1.2, 1.8, 1.7, and 1.8 A resolution, respectively. These structures support a mechanism that involves the formation of a cis-1,2-enediolate intermediate. Contrary to expectations, the geometry of the intermediate does not involve bidentate coordination of both enediolate oxygen atoms to the Mg(2+) ion but rather involves only the coordination of the oxygen on C2 to the Mg(2+) ion. The oxygen atom on C1 instead forms hydrogen bonds to both Lys64 and Asp67, two strictly conserved active site residues. Lys64 also interacts with the oxygen on C2 and may serve to stabilize a cis conformation of the 1,2-enediolate. These structures also implicate His136 to be the general acid that protonates the 1,2-enediolate intermediate. This study further demonstrates that multiple unrelated enzyme functions can evolve from a single active site architecture without regard for substrate binding affinity or mechanism.
3-酮基-L-古洛糖酸6-磷酸脱羧酶(KGPDC)和乳清苷5'-磷酸脱羧酶(OMPDC)是一个酶超家族——OMPDC超家族的成员,因为它们是同源酶,能使用不同底物催化机制不同的反应。KGPDC催化3-酮基-L-古洛糖酸6-磷酸的Mg(2+)离子依赖性脱羧反应,生成L-木酮糖5-磷酸和CO₂;OMPDC催化OMP的金属离子非依赖性脱羧反应生成UMP和CO₂。结构研究表明,KGPDC和OMPDC共享几个严格保守的活性位点残基,每种酶以不同方式利用这些残基来催化其机制不同的反应。尽管KGPDC催化反应的机制尚未阐明,但人们认为它是通过Mg(2+)离子稳定的1,2-烯二醇中间体进行的。在此,我们报道了KGPDC分别与底物类似物L-古洛糖酸6-磷酸、烯二醇中间体类似物L-苏糖异羟肟酸4-磷酸和产物类似物L-木糖醇5-磷酸以及产物L-木酮糖5-磷酸形成的复合物的晶体结构,分辨率分别为1.2、1.8、1.7和1.8 Å。这些结构支持了一种涉及顺式-1,2-烯二醇中间体形成的机制。与预期相反,中间体的几何结构并不涉及两个烯二醇氧原子与Mg(2+)离子的双齿配位,而是仅涉及C2上的氧与Mg(2+)离子的配位。C1上的氧原子反而与两个严格保守的活性位点残基Lys64和Asp67形成氢键。Lys64也与C2上的氧相互作用,可能有助于稳定1,2-烯二醇的顺式构象。这些结构还表明His136是使1,2-烯二醇中间体质子化的通用酸。这项研究进一步证明,多种不相关的酶功能可以从单一的活性位点结构进化而来,而不考虑底物结合亲和力或机制。