Wise Eric, Yew Wen Shan, Babbitt Patricia C, Gerlt John A, Rayment Ivan
Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA.
Biochemistry. 2002 Mar 26;41(12):3861-9. doi: 10.1021/bi012174e.
The 3-keto-L-gulonate 6-phosphate decarboxylase (KGPDC) encoded by the ulaD gene in the Escherichia coli genome [Yew, W. S., and Gerlt, J. A. (2002) J. Bacteriol. 184, 302-306] and orotidine 5'-monophosphate decarboxylase (OMPDC) are homologous (derived from a common ancestor) but catalyze different reactions. The metal-independent decarboxylation reaction catalyzed by OMPDC avoids the formation of a vinyl anion intermediate; the Mg2+-dependent decarboxylation reaction catalyzed by KGPDC involves the formation of an enediolate anion intermediate. Based on the available structures of OMPDC, a sequence alignment allows the predictions that (1) KGPDC is a dimer of (beta/alpha)8-barrels, with the active sites located at the dimer interface; (2) KGPDC and OMPDC share an aspartate residue at the end of the first beta-strand and an Asp-x-Lys-x-x-Asp motif at the end of the third beta-strand with OMPDC; but (3) KGPDC has a Glu instead of a Lys at the end of the second beta-strand. The structure of KGPDC has been determined in the presence of Mg2+ and the substrate analogue L-gulonate 6-phosphate and confirms these predictions. The carboxylate functional groups at the ends of the first, second, and third beta-strands in KGPDC are ligands of the Mg2+; in OMPDC, the homologues of these residues participate in a hydrogen-bonded network that facilitates the decarboxylation reaction. The 3-OH group of the substrate analogue is coordinated to the Mg2+, supporting the hypothesis that the mechanism of the decarboxylation catalyzed by KGPDC involves stabilization of an enediolate anion intermediate. These structural studies establish the existence of the OMPDC "suprafamily," in which members catalyze reactions that occur in different metabolic pathways and share no mechanistic relationship. The existence of this suprafamily demonstrates that divergent evolution can be opportunistic, conscripting active site features of a progenitor to catalyze unrelated functions. Accordingly, sequence or structure homology alone cannot be used to infer the functions of new proteins discovered in genome projects.
大肠杆菌基因组中ulaD基因编码的3-酮基-L-古洛糖酸6-磷酸脱羧酶(KGPDC)[Yew, W. S., and Gerlt, J. A. (2002) J. Bacteriol. 184, 302 - 306]与乳清苷5'-单磷酸脱羧酶(OMPDC)是同源的(源自共同祖先),但催化不同的反应。OMPDC催化的不依赖金属的脱羧反应避免了乙烯基阴离子中间体的形成;KGPDC催化的依赖Mg2+的脱羧反应涉及烯二醇酸根阴离子中间体的形成。基于OMPDC的现有结构,通过序列比对可以预测:(1)KGPDC是由(β/α)8桶状结构组成的二聚体,活性位点位于二聚体界面;(2)KGPDC与OMPDC在第一条β链末端共享一个天冬氨酸残基,在第三条β链末端与OMPDC共享一个Asp-x-Lys-x-x-Asp基序;但(3)KGPDC在第二条β链末端有一个谷氨酸而不是赖氨酸。已经在存在Mg2+和底物类似物L-古洛糖酸6-磷酸的情况下确定了KGPDC的结构,证实了这些预测。KGPDC中第一条、第二条和第三条β链末端的羧酸根官能团是Mg2+的配体;在OMPDC中,这些残基的同源物参与一个氢键网络,该网络促进脱羧反应。底物类似物的3-OH基团与Mg2+配位,支持了KGPDC催化的脱羧机制涉及烯二醇酸根阴离子中间体稳定化的假设。这些结构研究确定了OMPDC“超家族”的存在,其中成员催化发生在不同代谢途径中的反应,且没有共同的机制关系。这个超家族的存在表明,趋异进化可能是机会主义的,征用祖先的活性位点特征来催化不相关的功能。因此,不能仅根据序列或结构同源性来推断在基因组计划中发现的新蛋白质的功能。