Suppr超能文献

超音段言语线索由人脑自动处理:一项失配负波研究。

Suprasegmental speech cues are automatically processed by the human brain: a mismatch negativity study.

作者信息

Honbolygó Ferenc, Csépe Valéria, Ragó Anett

机构信息

Research Group of Developmental Psychophysiology, Department of Psychophysiology, Research Institute for Psychology, Hungarian Academy of Sciences, Budapest, Hungary.

出版信息

Neurosci Lett. 2004 Jun 3;363(1):84-8. doi: 10.1016/j.neulet.2004.03.057.

Abstract

This study investigates the electrical brain activity correlates of the automatic detection of suprasegmental and local speech cues by using a passive oddball paradigm, in which the standard Hungarian word 'banán' ('banana' in English) was contrasted with two deviants: a voiceless phoneme deviant ('panán'), and a stress deviant, where the stress was on the second syllable, instead of the obligatory first one. As a result, we obtained the mismatch negativity component (MMN) of event-related brain potentials in each condition. The stress deviant elicited two MMNs: one as a response to the lack of stress as compared to the standard stimulus, and another to the additional stress. Our results support that the MMN is as valuable in investigating processing characteristics of suprasegmental features as in that of phonemic features. MMN data may provide further insight into pre-attentive processes contributing to spoken word recognition.

摘要

本研究采用被动式oddball范式,调查大脑电活动与超音段和局部语音线索自动检测之间的相关性。在该范式中,标准匈牙利语单词“banán”(英语为“banana”)与两个偏离刺激进行对比:一个是无声音素偏离刺激(“panán”),另一个是重音偏离刺激,其重音在第二个音节,而非必须的第一个音节。结果,我们在每种条件下都获得了事件相关脑电位的失匹配负波成分(MMN)。重音偏离刺激引发了两个MMN:一个是对与标准刺激相比重音缺失的反应,另一个是对额外重音的反应。我们的结果支持,MMN在研究超音段特征的处理特性方面与音素特征的处理特性方面同样有价值。MMN数据可能为有助于口语单词识别的前注意过程提供进一步的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验