Suppr超能文献

具有检测限和测量误差协变量的纵向数据的同时推断及其在艾滋病研究中的应用。

Simultaneous inference for longitudinal data with detection limits and covariates measured with errors, with application to AIDS studies.

作者信息

Wu Lang

机构信息

Department of Statistics, University of British Columbia, Vancouver, BC, Canada V6T 1Z2.

出版信息

Stat Med. 2004 Jun 15;23(11):1715-31. doi: 10.1002/sim.1748.

Abstract

In AIDS studies such as HIV viral dynamics, statistical inference is often complicated because the viral load measurements may be subject to left censoring due to a detection limit and time-varying covariates such as CD4 counts may be measured with substantial errors. Mixed-effects models are often used to model the response and the covariate processes in these studies. We propose a unified approach which addresses the censoring and measurement errors simultaneously. We estimate the model parameters by a Monte-Carlo EM algorithm via the Gibbs sampler. A simulation study is conducted to compare the proposed method with the usual two-step method and a naive method. We find that the proposed method produces approximately unbiased estimates with more reliable standard errors. A real data set from an AIDS study is analysed using the proposed method.

摘要

在诸如HIV病毒动力学等艾滋病研究中,统计推断往往很复杂,因为病毒载量测量可能因检测限而受到左删失影响,并且诸如CD4计数等随时间变化的协变量可能存在大量测量误差。在这些研究中,混合效应模型常被用于对响应和协变量过程进行建模。我们提出一种统一的方法,该方法能同时处理删失和测量误差问题。我们通过吉布斯采样器,利用蒙特卡罗期望最大化(EM)算法来估计模型参数。进行了一项模拟研究,将所提出的方法与常用的两步法和一种简单方法进行比较。我们发现,所提出的方法能产生近似无偏估计,且标准误差更可靠。使用所提出的方法对一个艾滋病研究的真实数据集进行了分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验