Suppr超能文献

具有协变量测量误差和缺失响应的半参数非线性混合效应模型的同时推断。

Simultaneous inference for semiparametric nonlinear mixed-effects models with covariate measurement errors and missing responses.

作者信息

Liu Wei, Wu Lang

机构信息

Department of Statistics, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada.

出版信息

Biometrics. 2007 Jun;63(2):342-50. doi: 10.1111/j.1541-0420.2006.00687.x.

Abstract

Semiparametric nonlinear mixed-effects (NLME) models are flexible for modeling complex longitudinal data. Covariates are usually introduced in the models to partially explain interindividual variations. Some covariates, however, may be measured with substantial errors. Moreover, the responses may be missing and the missingness may be nonignorable. We propose two approximate likelihood methods for semiparametric NLME models with covariate measurement errors and nonignorable missing responses. The methods are illustrated in a real data example. Simulation results show that both methods perform well and are much better than the commonly used naive method.

摘要

半参数非线性混合效应(NLME)模型在对复杂纵向数据进行建模时具有灵活性。通常在模型中引入协变量以部分解释个体间的差异。然而,一些协变量可能存在较大测量误差。此外,响应可能会缺失,且这种缺失可能不可忽略。我们针对具有协变量测量误差和不可忽略缺失响应的半参数NLME模型提出了两种近似似然方法。通过一个实际数据示例对这些方法进行了说明。模拟结果表明,这两种方法都表现良好,且比常用的简单方法要好得多。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验