Hande M P
Department of Physiology, Faculty of Medicine, National University of Singapore, and Oncology Research Institute, Singapore, Singapore.
Cytogenet Genome Res. 2004;104(1-4):116-22. doi: 10.1159/000077475.
Loss of telomere equilibrium and associated chromosome-genomic instability might effectively promote tumour progression. Telomere function may have contrasting roles: inducing replicative senescence and promoting tumourigenesis and these roles may vary between cell types depending on the expression of the enzyme telomerase, the level of mutations induced, and efficiency/deficiency of related DNA repair pathways. We have identified an alternative telomere maintenance mechanism in mouse embryonic stem cells lacking telomerase RNA unit (mTER) with amplification of non-telomeric sequences adjacent to existing short stretches of telomere repeats. Our quest for identifying telomerase-independent or alternative mechanisms involved in telomere maintenance in mammalian cells has implicated the involvement of potential DNA repair factors in such pathways. We have reported earlier on the telomere equilibrium in scid mouse cells which suggested a potential role of DNA repair proteins in telomere maintenance in mammalian cells. Subsequently, studies by us and others have shown the association between the DNA repair factors and telomere function. Mice deficient in a DNA-break sensing molecule, PARP-1 (poly [ADP]-ribopolymerase), have increased levels of chromosomal instability associated with extensive telomere shortening. Ku80 null cells showed a telomere shortening associated with extensive chromosome end fusions, whereas Ku80+/- cells exhibited an intermediate level of telomere shortening. Inactivation of PARP-1 in p53-/- cells resulted in dysfunctional telomeres and severe chromosome instability leading to advanced onset and increased tumour incidence in mice. Interestingly, haploinsufficiency of PARP-1 in Ku80 null cells causes more severe telomere shortening and chromosome abnormalities compared to either PARP-1 or Ku80 single null cells and Ku80+/-PARP-/- mice develop spontaneous tumours. This overview will focus mainly on the role of DNA repair/recombination and DNA damage signalling molecules such as PARP-1, DNA-PKcs, Ku70/80, XRCC4 and ATM which we have been studying for the last few years. Because the maintenance of telomere function is crucial for genomic stability, our results will provide new insights into the mechanisms of chromosome instability and tumour formation.
端粒平衡的丧失及相关的染色体 - 基因组不稳定性可能会有效地促进肿瘤进展。端粒功能可能具有相反的作用:诱导复制性衰老和促进肿瘤发生,并且这些作用在不同细胞类型之间可能会有所不同,这取决于端粒酶的表达、诱导的突变水平以及相关DNA修复途径的效率/缺陷。我们在缺乏端粒酶RNA单元(mTER)的小鼠胚胎干细胞中发现了一种替代的端粒维持机制,其中与现有短片段端粒重复序列相邻的非端粒序列会发生扩增。我们对确定哺乳动物细胞中端粒维持所涉及的端粒酶非依赖性或替代机制的探索表明,潜在的DNA修复因子参与了这些途径。我们之前报道过scid小鼠细胞中的端粒平衡,这表明DNA修复蛋白在哺乳动物细胞端粒维持中可能发挥作用。随后,我们和其他人的研究表明了DNA修复因子与端粒功能之间的关联。缺乏DNA断裂传感分子PARP - 1(聚[ADP] - 核糖聚合酶)的小鼠,其染色体不稳定性水平增加,伴有广泛的端粒缩短。Ku80基因敲除细胞表现出与广泛的染色体末端融合相关的端粒缩短,而Ku80+/-细胞表现出中等程度的端粒缩短。在p53-/-细胞中PARP - 1的失活导致端粒功能障碍和严重的染色体不稳定性,从而导致小鼠发病提前和肿瘤发生率增加。有趣的是,与PARP - 1或Ku80单基因敲除细胞相比,Ku80基因敲除细胞中PARP - 1的单倍剂量不足会导致更严重的端粒缩短和染色体异常,并且Ku80+/-PARP-/-小鼠会发生自发性肿瘤。本综述将主要关注DNA修复/重组以及DNA损伤信号分子如PARP - 1、DNA - PKcs、Ku70/80、XRCC4和ATM的作用,这些是我们过去几年一直在研究的。由于端粒功能的维持对基因组稳定性至关重要,我们的结果将为染色体不稳定性和肿瘤形成的机制提供新的见解。