Suppr超能文献

皮层网络中的计算与稳定性

Computing and stability in cortical networks.

作者信息

Latham Peter E, Nirenberg Sheila

机构信息

Department of Neurobiology, University of California at Los Angeles, Los Angeles, CA 90095-1763, USA.

出版信息

Neural Comput. 2004 Jul;16(7):1385-412. doi: 10.1162/089976604323057434.

Abstract

Cortical neurons are predominantly excitatory and highly interconnected. In spite of this, the cortex is remarkably stable: normal brains do not exhibit the kind of runaway excitation one might expect of such a system. How does the cortex maintain stability in the face of this massive excitatory feedback? More importantly, how does it do so during computations, which necessarily involve elevated firing rates? Here we address these questions in the context of attractor networks-networks that exhibit multiple stable states, or memories. We find that such networks can be stabilized at the relatively low firing rates observed in vivo if two conditions are met: (1) the background state, where all neurons are firing at low rates, is inhibition dominated, and (2) the fraction of neurons involved in a memory is above some threshold, so that there is sufficient coupling between the memory neurons and the background. This allows "dynamical stabilization" of the attractors, meaning feedback from the pool of background neurons stabilizes what would otherwise be an unstable state. We suggest that dynamical stabilization may be a strategy used for a broad range of computations, not just those involving attractors.

摘要

皮层神经元主要是兴奋性的,且相互之间高度连接。尽管如此,皮层却非常稳定:正常大脑并不会表现出人们可能预期这样一个系统会出现的那种失控兴奋。面对这种大量的兴奋性反馈,皮层是如何维持稳定性的呢?更重要的是,在必然涉及提高放电率的计算过程中,它又是如何做到这一点的呢?在这里,我们在吸引子网络(即呈现多个稳定状态或记忆的网络)的背景下探讨这些问题。我们发现,如果满足两个条件,这样的网络可以在体内观察到的相对较低放电率下实现稳定:(1)所有神经元都以低速率放电的背景状态由抑制主导,以及(2)参与记忆的神经元比例高于某个阈值,以便记忆神经元与背景之间有足够的耦合。这允许吸引子的“动态稳定”,意味着来自背景神经元池的反馈稳定了原本不稳定的状态。我们认为动态稳定可能是一种用于广泛计算的策略,而不仅仅是那些涉及吸引子的计算。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验