Sussillo David, Toyoizumi Taro, Maass Wolfgang
Center for Theoretical Neuroscience in the Center for Neurobiology and Behavior, Columbia University, New York, New York, USA.
J Neurophysiol. 2007 Jun;97(6):4079-95. doi: 10.1152/jn.01357.2006. Epub 2007 Apr 4.
Numerous experimental data show that cortical networks of neurons are not silent in the absence of external inputs, but rather maintain a low spontaneous firing activity. This aspect of cortical networks is likely to be important for their computational function, but is hard to reproduce in models of cortical circuits of neurons because the low-activity regime is inherently unstable. Here we show-through theoretical analysis and extensive computer simulations-that short-term synaptic plasticity endows models of cortical circuits with a remarkable stability in the low-activity regime. This short-term plasticity works as a homeostatic mechanism that stabilizes the overall activity level in spite of drastic changes in external inputs and internal circuit properties, while preserving reliable transient responses to signals. The contribution of synaptic dynamics to this stability can be predicted on the basis of general principles from control theory.
大量实验数据表明,在没有外部输入的情况下,神经元的皮质网络并非静止不动,而是维持着低水平的自发放电活动。皮质网络的这一特性可能对其计算功能至关重要,但在神经元皮质回路模型中却很难再现,因为低活动状态本质上是不稳定的。在此,我们通过理论分析和广泛的计算机模拟表明,短期突触可塑性赋予皮质回路模型在低活动状态下显著的稳定性。这种短期可塑性起到一种稳态机制的作用,尽管外部输入和内部回路特性发生剧烈变化,它仍能稳定整体活动水平,同时保留对信号可靠的瞬态响应。基于控制理论的一般原理,可以预测突触动力学对这种稳定性的贡献。