Suppr超能文献

稀疏编码的发展:一种动态系统方法。

Developmental Emergence of Sparse Coding: A Dynamic Systems Approach.

机构信息

Department of Psychology, Technische Universität Dresden, 01187, Dresden, Germany.

Hans-Berger Department of Neurology, University Hospital Jena, 07747, Jena, Germany.

出版信息

Sci Rep. 2017 Oct 12;7(1):13015. doi: 10.1038/s41598-017-13468-z.

Abstract

During neocortical development, network activity undergoes a dramatic transition from largely synchronized, so-called cluster activity, to a relatively sparse pattern around the time of eye-opening in rodents. Biophysical mechanisms underlying this sparsification phenomenon remain poorly understood. Here, we present a dynamic systems modeling study of a developing neural network that provides the first mechanistic insights into sparsification. We find that the rest state of immature networks is strongly affected by the dynamics of a transient, unstable state hidden in their firing activities, allowing these networks to either be silent or generate large cluster activity. We address how, and which, specific developmental changes in neuronal and synaptic parameters drive sparsification. We also reveal how these changes refine the information processing capabilities of an in vivo developing network, mainly by showing a developmental reduction in the instability of network's firing activity, an effective availability of inhibition-stabilized states, and an emergence of spontaneous attractors and state transition mechanisms. Furthermore, we demonstrate the key role of GABAergic transmission and depressing glutamatergic synapses in governing the spatiotemporal evolution of cluster activity. These results, by providing a strong link between experimental observations and model behavior, suggest how adult sparse coding networks may emerge developmentally.

摘要

在新皮层发育过程中,网络活动经历了从主要同步的所谓簇活动到在啮齿动物睁眼时相对稀疏的模式的巨大转变。支持这种稀疏化现象的生物物理机制仍知之甚少。在这里,我们提出了一个发展中的神经网络的动态系统建模研究,为稀疏化提供了第一个机械见解。我们发现,不成熟网络的休息状态受到其发射活动中隐藏的短暂、不稳定状态的动力学的强烈影响,使这些网络可以保持沉默或产生大量簇活动。我们解决了神经元和突触参数的哪些特定发育变化如何导致稀疏化。我们还揭示了这些变化如何改善体内发育网络的信息处理能力,主要是通过显示网络发射活动的不稳定性、抑制稳定状态的有效可用性以及自发吸引子和状态转变机制的出现来实现。此外,我们证明了 GABA 能传递和压抑性谷氨酸能突触在控制簇活动的时空演化中的关键作用。这些结果通过在实验观察和模型行为之间建立强有力的联系,表明了成年稀疏编码网络如何在发育过程中出现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36c3/5638906/10128cb6905e/41598_2017_13468_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验