Suppr超能文献

秀丽隐杆线虫的OSR-1调节对高渗环境的行为和生理反应。

Caenorhabditis elegans OSR-1 regulates behavioral and physiological responses to hyperosmotic environments.

作者信息

Solomon Aharon, Bandhakavi Sricharan, Jabbar Sean, Shah Rena, Beitel Greg J, Morimoto Richard I

机构信息

Department of Biochemistry, Molecular Biology and Cell Biology, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, USA.

出版信息

Genetics. 2004 May;167(1):161-70. doi: 10.1534/genetics.167.1.161.

Abstract

The molecular mechanisms that enable multicellular organisms to sense and modulate their responses to hyperosmotic environments are poorly understood. Here, we employ Caenorhabditis elegans to characterize the response of a multicellular organism to osmotic stress and establish a genetic screen to isolate mutants that are osmotic stress resistant (OSR). In this study, we describe the cloning of a novel gene, osr-1, and demonstrate that it regulates osmosensation, adaptation, and survival in hyperosmotic environments. Whereas wild-type animals exposed to hyperosmotic conditions rapidly lose body volume, motility, and viability, osr-1(rm1) mutant animals maintain normal body volume, motility, and viability even upon chronic exposures to high osmolarity environments. In addition, osr-1(rm1) animals are specifically resistant to osmotic stress and are distinct from previously characterized osmotic avoidance defective (OSM) and general stress resistance age-1(hx546) mutants. OSR-1 is expressed in the hypodermis and intestine, and expression of OSR-1 in hypodermal cells rescues the osr-1(rm1) phenotypes. Genetic epistasis analysis indicates that OSR-1 regulates survival under osmotic stress via CaMKII and a conserved p38 MAP kinase signaling cascade and regulates osmotic avoidance and resistance to acute dehydration likely by distinct mechanisms. We suggest that OSR-1 plays a central role in integrating stress detection and adaptation responses by invoking multiple signaling pathways to promote survival under hyperosmotic environments.

摘要

多细胞生物感知并调节其对高渗环境反应的分子机制目前仍知之甚少。在此,我们利用秀丽隐杆线虫来表征多细胞生物对渗透胁迫的反应,并建立了一个遗传筛选体系以分离出抗渗透胁迫(OSR)的突变体。在本研究中,我们描述了一个新基因osr-1的克隆,并证明它在高渗环境中调节渗透压感知、适应性和生存能力。野生型动物暴露于高渗条件下会迅速失去身体体积、运动能力和生存能力,而osr-1(rm1)突变体动物即使长期暴露于高渗透压环境中仍能维持正常的身体体积、运动能力和生存能力。此外,osr-1(rm1)动物对渗透胁迫具有特异性抗性,且与先前鉴定的渗透逃避缺陷(OSM)和一般应激抗性age-1(hx546)突变体不同。OSR-1在皮下组织和肠道中表达,在皮下细胞中表达OSR-1可挽救osr-1(rm1)的表型。遗传上位性分析表明,OSR-1通过CaMKII和保守的p38 MAP激酶信号级联调节渗透胁迫下的生存能力,并可能通过不同机制调节渗透逃避和对急性脱水的抗性。我们认为,OSR-1通过调用多种信号通路促进在高渗环境下的生存,在整合应激检测和适应性反应中发挥核心作用。

相似文献

2
Identification of a novel gene family involved in osmotic stress response in Caenorhabditis elegans.
Genetics. 2006 Nov;174(3):1327-36. doi: 10.1534/genetics.106.059089. Epub 2006 Sep 15.
6
Abnormal Osmotic Avoidance Behavior in C. elegans Is Associated with Increased Hypertonic Stress Resistance and Improved Proteostasis.
PLoS One. 2016 Apr 25;11(4):e0154156. doi: 10.1371/journal.pone.0154156. eCollection 2016.
7
The SEK-1 p38 MAP Kinase Pathway Modulates Gq Signaling in .
G3 (Bethesda). 2017 Sep 7;7(9):2979-2989. doi: 10.1534/g3.117.043273.

引用本文的文献

1
Soma to neuron communication links stress adaptation to stress avoidance behavior.
bioRxiv. 2025 May 7:2025.05.07.652728. doi: 10.1101/2025.05.07.652728.
3
Anti-Aging Effects and Mechanisms of Cod Collagen Peptides (CCPs) in .
J Funct Biomater. 2025 Apr 23;16(5):150. doi: 10.3390/jfb16050150.
5
High-throughput assessment of the behavioral responses to toxic organic solvents in Caenorhabditis elegans.
PLoS One. 2025 Apr 17;20(4):e0311460. doi: 10.1371/journal.pone.0311460. eCollection 2025.
6
Osmolarity regulates egg-laying behavior via parallel chemosensory and biophysical mechanisms.
bioRxiv. 2024 Dec 31:2024.12.30.630790. doi: 10.1101/2024.12.30.630790.
7
Stress survival and longevity of lacking NCS-1.
Toxicol Res (Camb). 2024 Nov 15;13(6):tfae187. doi: 10.1093/toxres/tfae187. eCollection 2024 Dec.
8
Adenylosuccinate lyase deficiency affects neurobehavior via perturbations to tyramine signaling in Caenorhabditis elegans.
PLoS Genet. 2023 Sep 29;19(9):e1010974. doi: 10.1371/journal.pgen.1010974. eCollection 2023 Sep.
9
A germline-targeted genetic screen for xrn-2 suppressors identifies a novel gene C34C12.2 in Caenorhabditis elegans.
Genet Mol Biol. 2023 May 15;46(2):e20220328. doi: 10.1590/1678-4685-GMB-2022-0328. eCollection 2023.
10
Dicarbonyl/L-xylulose reductase (DCXR) producing xylitol regulates egg retention through osmolality control in .
Anim Cells Syst (Seoul). 2022 Oct 6;26(5):223-231. doi: 10.1080/19768354.2022.2126886. eCollection 2022.

本文引用的文献

1
Adaptation of the nematode Caenorhabditis elegans to extreme osmotic stress.
Am J Physiol Cell Physiol. 2004 Apr;286(4):C785-91. doi: 10.1152/ajpcell.00381.2003. Epub 2003 Nov 26.
2
Rac-MEKK3-MKK3 scaffolding for p38 MAPK activation during hyperosmotic shock.
Nat Cell Biol. 2003 Dec;5(12):1104-10. doi: 10.1038/ncb1071. Epub 2003 Nov 23.
3
Caenorhabditis elegans: an emerging genetic model for the study of innate immunity.
Nat Rev Genet. 2003 May;4(5):380-90. doi: 10.1038/nrg1067.
4
A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity.
Nat Genet. 2003 Jan;33(1):40-8. doi: 10.1038/ng1056. Epub 2002 Nov 25.
5
The expression of TGFbeta signal transducers in the hypodermis regulates body size in C. elegans.
Development. 2002 Nov;129(21):4989-98. doi: 10.1242/dev.129.21.4989.
7
Dealing with osmostress through MAP kinase activation.
EMBO Rep. 2002 Aug;3(8):735-40. doi: 10.1093/embo-reports/kvf158.
8
A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity.
Science. 2002 Jul 26;297(5581):623-6. doi: 10.1126/science.1073759.
9
Yeast go the whole HOG for the hyperosmotic response.
Trends Genet. 2002 Aug;18(8):405-12. doi: 10.1016/s0168-9525(02)02723-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验