Gollin D J, Mortenson L E, Robson R L
Department of Biochemistry, University of Georgia, Athens 30602-7229.
FEBS Lett. 1992 Sep 14;309(3):371-5. doi: 10.1016/0014-5793(92)80809-u.
The NiFe hydrogenase from Azotobacter vinelandii is a membrane-bound alpha beta heterodimer that can oxidize H2 to protons and electrons and thereby provide energy. Genes encoding the alpha and beta subunits, hoxG and hoxK respectively, followed by thirteen contiguous accessory genes potentially involved in H2 oxidation, have been previously sequenced. Mutations in some of these accessory genes give rise to inactive enzyme containing an alpha subunit with decreased electrophoretic mobility. Mass spectral analysis of the subunits demonstrated that the alpha subunit had a molecular weight 1,663 Da less than that predicted from hoxG. Since the N-terminal sequence of the purified alpha subunit matches the sequence predicted from hoxG we suggest this difference is due to removal of the C-terminus of the alpha subunit which may be an important step linked to metal insertion, localization, and formation of active hydrogenase.