Pinske Constanze, Sawers R Gary
Institute of Biology/Microbiology, Martin Luther University, Halle-Wittenberg, 06120 Halle, Germany.
Institute of Biology/Microbiology, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany.
EcoSal Plus. 2016 Oct;7(1). doi: 10.1128/ecosalplus.ESP-0011-2016.
Numerous recent developments in the biochemistry, molecular biology, and physiology of formate and H2 metabolism and of the [NiFe]-hydrogenase (Hyd) cofactor biosynthetic machinery are highlighted. Formate export and import by the aquaporin-like pentameric formate channel FocA is governed by interaction with pyruvate formate-lyase, the enzyme that generates formate. Formate is disproportionated by the reversible formate hydrogenlyase (FHL) complex, which has been isolated, allowing biochemical dissection of evolutionary parallels with complex I of the respiratory chain. A recently identified sulfido-ligand attached to Mo in the active site of formate dehydrogenases led to the proposal of a modified catalytic mechanism. Structural analysis of the homologous, H2-oxidizing Hyd-1 and Hyd-5 identified a novel proximal [4Fe-3S] cluster in the small subunit involved in conferring oxygen tolerance to the enzymes. Synthesis of Salmonella Typhimurium Hyd-5 occurs aerobically, which is novel for an enterobacterial Hyd. The O2-sensitive Hyd-2 enzyme has been shown to be reversible: it presumably acts as a conformational proton pump in the H2-oxidizing mode and is capable of coupling reverse electron transport to drive H2 release. The structural characterization of all the Hyp maturation proteins has given new impulse to studies on the biosynthesis of the Fe(CN)2CO moiety of the [NiFe] cofactor. It is synthesized on a Hyp-scaffold complex, mainly comprising HypC and HypD, before insertion into the apo-large subunit. Finally, clear evidence now exists indicating that Escherichia coli can mature Hyd enzymes differentially, depending on metal ion availability and the prevailing metabolic state. Notably, Hyd-3 of the FHL complex takes precedence over the H2-oxidizing enzymes.
本文重点介绍了甲酸和H2代谢以及[NiFe]-氢化酶(Hyd)辅因子生物合成机制在生物化学、分子生物学和生理学方面的众多最新进展。水通道蛋白样五聚体甲酸通道FocA的甲酸输出和输入受与丙酮酸甲酸裂解酶(生成甲酸的酶)的相互作用控制。甲酸可被可逆的甲酸氢化酶(FHL)复合物歧化,该复合物已被分离出来,从而可以对其与呼吸链复合物I的进化相似性进行生化剖析。最近在甲酸脱氢酶活性位点中发现的与钼相连的硫代配体,促使人们提出了一种改进的催化机制。对同源的H2氧化型Hyd-1和Hyd-5进行结构分析,在小亚基中发现了一个新的近端[4Fe-3S]簇,该簇参与赋予酶耐氧性。鼠伤寒沙门氏菌Hyd-5的合成是在有氧条件下进行的,这对于肠杆菌Hyd来说是新颖的。已证明对氧气敏感的Hyd-2酶是可逆的:它可能在H2氧化模式下作为构象质子泵,并且能够耦合反向电子传递以驱动H2释放。所有Hyp成熟蛋白的结构表征为[NiFe]辅因子的Fe(CN)2CO部分的生物合成研究带来了新的动力。它在主要由HypC和HypD组成的Hyp支架复合物上合成,然后插入脱辅基大亚基中。最后,现在有明确的证据表明,大肠杆菌可以根据金属离子的可用性和主要的代谢状态差异地成熟Hyd酶。值得注意的是,FHL复合物的Hyd-3优先于H2氧化酶。