Suppr超能文献

通过神经网络集成进行N端肉豆蔻酰化预测。

N-Terminal myristoylation predictions by ensembles of neural networks.

作者信息

Bologna Guido, Yvon Cédric, Duvaud Séverine, Veuthey Anne-Lise

机构信息

Swiss Institute of Bioinformatics, Geneva, Switzerland.

出版信息

Proteomics. 2004 Jun;4(6):1626-32. doi: 10.1002/pmic.200300783.

Abstract

N-terminal myristoylation is a post-translational modification that causes the addition of a myristate to a glycine in the N-terminal end of the amino acid chain. This work presents neural network (NN) models that learn to discriminate myristoylated and nonmyristoylated proteins. Ensembles of 25 NNs and decision trees were trained on 390 positive sequences and 327 negative sequences. Experiments showed that NN ensembles were more accurate than decision tree ensembles. Our NN predictor evaluated by the leave-one-out procedure, obtained a false positive error rate equal to 2.1%. That was better than the PROSITE pattern for myristoylation for which the false positive error rate was 22.3%. On a recent version of Swiss-Prot (41.2), the NN ensemble predicted 876 myristoylated proteins, while 1150 proteins were predicted by the PROSITE pattern for myristoylation. Finally, compared to the well-known NMT predictor, the NN predictor gave similar results. Our tool is available under http://www.expasy.org/tools/myristoylator/myristoylator.html.

摘要

N端肉豆蔻酰化是一种翻译后修饰,它会导致在氨基酸链的N端将一个肉豆蔻酸添加到甘氨酸上。这项工作提出了神经网络(NN)模型,用于学习区分肉豆蔻酰化和非肉豆蔻酰化的蛋白质。在390个阳性序列和327个阴性序列上训练了由25个神经网络和决策树组成的集成模型。实验表明,神经网络集成模型比决策树集成模型更准确。通过留一法评估的我们的神经网络预测器,获得的假阳性错误率等于2.1%。这比用于肉豆蔻酰化的PROSITE模式要好,其假阳性错误率为22.3%。在瑞士蛋白质数据库(Swiss-Prot)的最新版本(41.2)上,神经网络集成模型预测出876个肉豆蔻酰化蛋白质,而PROSITE肉豆蔻酰化模式预测出1150个蛋白质。最后,与著名的NMT预测器相比,神经网络预测器给出了相似的结果。我们的工具可在http://www.expasy.org/tools/myristoylator/myristoylator.html获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验