Gabius Hans-Joachim, Siebert Hans-Christian, André Sabine, Jiménez-Barbero Jesús, Rüdiger Harold
Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität, Veterinärstrasse 13, 80539 Munich, Germany.
Chembiochem. 2004 Jun 7;5(6):740-64. doi: 10.1002/cbic.200300753.
A high-density coding system is essential to allow cells to communicate efficiently and swiftly through complex surface interactions. All the structural requirements for forming a wide array of signals with a system of minimal size are met by oligomers of carbohydrates. These molecules surpass amino acids and nucleotides by far in information-storing capacity and serve as ligands in biorecognition processes for the transfer of information. The results of work aiming to reveal the intricate ways in which oligosaccharide determinants of cellular glycoconjugates interact with tissue lectins and thereby trigger multifarious cellular responses (e.g. in adhesion or growth regulation) are teaching amazing lessons about the range of finely tuned activities involved. The ability of enzymes to generate an enormous diversity of biochemical signals is matched by receptor proteins (lectins), which are equally elaborate. The multiformity of lectins ensures accurate signal decoding and transmission. The exquisite refinement of both sides of the protein-carbohydrate recognition system turns the structural complexity of glycans--a demanding but essentially mastered problem for analytical chemistry--into a biochemical virtue. The emerging medical importance of protein-carbohydrate recognition, for example in combating infection and the spread of tumors or in targeting drugs, also explains why this interaction system is no longer below industrial radarscopes. Our review sketches the concept of the sugar code, with a solid description of the historical background. We also place emphasis on a distinctive feature of the code, that is, the potential of a carbohydrate ligand to adopt various defined shapes, each with its own particular ligand properties (differential conformer selection). Proper consideration of the structure and shape of the ligand enables us to envision the chemical design of potent binding partners for a target (in lectin-mediated drug delivery) or ways to block lectins of medical importance (in infection, tumor spread, or inflammation).
高密度编码系统对于细胞通过复杂的表面相互作用进行高效、快速的通讯至关重要。碳水化合物寡聚体满足了以最小尺寸系统形成大量信号的所有结构要求。这些分子在信息存储能力方面远远超过氨基酸和核苷酸,并在生物识别过程中作为信息传递的配体。旨在揭示细胞糖缀合物的寡糖决定簇与组织凝集素相互作用从而引发多种细胞反应(如在黏附或生长调节中)的复杂方式的研究工作,正在为我们带来有关所涉及的精细调节活动范围的惊人启示。酶产生多种生化信号的能力与同样精细的受体蛋白(凝集素)相匹配。凝集素的多样性确保了信号的准确解码和传递。蛋白质 - 碳水化合物识别系统双方的精妙完善,将聚糖的结构复杂性——这对分析化学来说是一个艰巨但基本已攻克的问题——转化为一种生化优势。蛋白质 - 碳水化合物识别在医学上日益重要,例如在对抗感染和肿瘤扩散或药物靶向方面,这也解释了为什么这个相互作用系统不再处于工业雷达监测范围之外。我们的综述勾勒了糖代码的概念,并对其历史背景进行了详实描述。我们还强调了该代码的一个显著特征,即碳水化合物配体具有采用各种确定形状的潜力,每种形状都有其特定的配体特性(差异构象选择)。对配体的结构和形状进行适当考虑,使我们能够设想针对目标的有效结合伙伴的化学设计(在凝集素介导的药物递送中),或阻断具有医学重要性的凝集素的方法(在感染、肿瘤扩散或炎症中)。