Andrizhiyevskaya Elena G, Frolov Dmitrij, Van Grondelle Rienk, Dekker Jan P
Faculty of Sciences, Division of Physics and Astronomy, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.
Biochim Biophys Acta. 2004 Jun 7;1656(2-3):104-13. doi: 10.1016/j.bbabio.2004.02.002.
The cyanobacterium Synechococcus PCC 7942 grown under iron starvation assembles a supercomplex consisting of a trimeric Photosystem I (PSI) complex encircled by a ring of 18 CP43' or IsiA complexes. It has previously been shown that PSI of Synechococcus PCC 7942 contains less special long-wavelength ('red') chlorophylls than PSI of most other cyanobacteria. Here we present a comparative analysis by time-resolved absorption difference and fluorescence spectroscopy of the processes of energy transfer and trapping in trimeric PSI and PSI-IsiA supercomplexes from Synechococcus PCC 7942. All experiments were performed with the primary electron donor of PSI (P700) in the oxidized state. Our data suggest that in the PSI complex the excitation energy is equilibrated with a lifetime of 0.6 ps among the so-called bulk chlorophylls, is distributed in 3-4 ps between the bulk and red chlorophylls, and is trapped in the reaction center in 19 ps. This trapping time is shorter than that observed for other cyanobacteria, which we attribute to the lower content of red chlorophylls in PSI of this organism. In the PSI-IsiA supercomplexes, the distribution of excited states is blue-shifted compared to that in PSI, leading to a lengthening of the equilibration processes. We attributed a phase of about 1 ps to initial energy equilibration steps among the IsiA and PSI core bulk chlorophylls, a 5-7 ps phase to equilibration between bulk and red chlorophylls within the PSI core, and a 38 ps phase to trapping in the reaction center. The data suggest that the excitation energy is equilibrated among the IsiA and PSI core antenna chlorophylls before trapping occurs. Data analysis based on a simple kinetic model revealed an intrinsic rate constant for energy transfer from IsiA to PSI in the range of 2+/-1 ps. Based on this value we suggest the presence of one or more linker chlorophylls between the IsiA and PSI core complexes. These results confirm that IsiA acts as an effective light-harvesting antenna for PSI.
在铁饥饿条件下生长的蓝藻聚球藻PCC 7942组装了一种超复合物,该超复合物由一个三聚体光系统I(PSI)复合物组成,周围环绕着一圈18个CP43'或IsiA复合物。此前已有研究表明,聚球藻PCC 7942的PSI所含的特殊长波长(“红色”)叶绿素比大多数其他蓝藻的PSI少。在此,我们通过时间分辨吸收差异和荧光光谱对聚球藻PCC 7942的三聚体PSI和PSI-IsiA超复合物中的能量转移和捕获过程进行了比较分析。所有实验均在PSI的初级电子供体(P700)处于氧化态的情况下进行。我们的数据表明,在PSI复合物中,激发能在所谓的大量叶绿素之间以0.6皮秒的寿命达到平衡,在大量叶绿素和红色叶绿素之间在3 - 4皮秒内分布,然后在19皮秒内被困在反应中心。这个捕获时间比在其他蓝藻中观察到的要短,我们将其归因于该生物体PSI中红色叶绿素含量较低。在PSI-IsiA超复合物中,与PSI相比,激发态的分布发生蓝移,导致平衡过程延长。我们将约1皮秒的一个阶段归因于IsiA和PSI核心大量叶绿素之间的初始能量平衡步骤,将5 - 7皮秒的阶段归因于PSI核心内大量叶绿素和红色叶绿素之间的平衡,将38皮秒的阶段归因于在反应中心的捕获。数据表明,激发能在捕获发生之前在IsiA和PSI核心天线叶绿素之间达到平衡。基于一个简单动力学模型的数据分析揭示了从IsiA到PSI的能量转移的内在速率常数在2±1皮秒范围内。基于这个值,我们认为在IsiA和PSI核心复合物之间存在一个或多个连接叶绿素。这些结果证实IsiA作为PSI的有效光捕获天线发挥作用。