Zhang Yinan, Chen Min, Church W Bret, Lau Kwok Wai, Larkum Anthony W D, Jermiin Lars S
School of Biological Sciences, University of Sydney, Sydney, NSW, Australia.
Biochim Biophys Acta. 2010 Apr;1797(4):457-65. doi: 10.1016/j.bbabio.2010.01.002. Epub 2010 Jan 11.
We present the molecular structure of the IsiA-Photosystem I (PSI) supercomplex, inferred from high-resolution, crystal structures of PSI and the CP43 protein. The structure of iron-stress-induced A protein (IsiA) is similar to that of CP43, albeit with the difference that IsiA is associated with 15 chlorophylls (Chls), one more than previously assumed. The membrane-spanning helices of IsiA contain hydrophilic residues many of which bind Chl. The optimal structure of the IsiA-PSI supercomplex was inferred by systematically rearranging the IsiA monomers and PSI trimer in relation to each other. For each of the 6,969,600 structural configurations considered, we counted the number of optimal Chl-Chl connections (i.e., cases where Chl-bound Mg atoms are <or=25A apart). Fifty of these configurations were found to have optimal energy-transfer potential. The 50 configurations could be divided into three variants; one of these, comprising 36 similar configurations, was found to be superior to the other configurations in terms of its potential to transfer excitation energy to the reaction centres under low-light conditions and its potential to dissipate excess energy under high-light conditions. Compared to the assumed model [Biochemistry 42 (2003) 3180-3188], the new Chl increases by 7% the ability of IsiA to harvest sunlight while the rearrangement of the constituent components of the IsiA-PSI supercomplex increases by 228% the energy-transfer potential. In conclusion, our model allows us to explain how the IsiA-PSI supercomplex may act as an efficient light-harvesting structure under low-light conditions and as an efficient dissipater of excess energy under high-light conditions.
我们展示了铁应激诱导蛋白A(IsiA)-光系统I(PSI)超复合物的分子结构,该结构是根据PSI和CP43蛋白的高分辨率晶体结构推断出来的。铁应激诱导蛋白A(IsiA)的结构与CP43相似,不过不同之处在于IsiA与15个叶绿素(Chls)结合,比之前设想的多一个。IsiA的跨膜螺旋含有许多亲水残基,其中许多残基结合叶绿素。通过系统地重新排列IsiA单体和PSI三聚体彼此之间的关系,推断出了IsiA-PSI超复合物的最佳结构。对于所考虑的6,969,600种结构构型中的每一种,我们计算了最佳叶绿素-叶绿素连接的数量(即叶绿素结合的镁原子相距小于或等于25埃的情况)。发现其中50种构型具有最佳的能量转移潜力。这50种构型可分为三种变体;其中一种包含36种相似构型,发现在低光条件下将激发能转移到反应中心的潜力以及在高光条件下耗散多余能量的潜力方面优于其他构型。与假设模型[《生物化学》42(2003年)3180 - 3188]相比,新的叶绿素使IsiA捕获太阳光的能力提高了7%,而IsiA-PSI超复合物组成成分的重新排列使能量转移潜力提高了228%。总之,我们的模型使我们能够解释IsiA-PSI超复合物如何在低光条件下作为一种高效的光捕获结构,以及在高光条件下作为一种高效的多余能量耗散结构发挥作用。