Srikanth Sonal, Wang Zhengnan, Tu Huiping, Nair Shalima, Mathew M K, Hasan Gaiti, Bezprozvanny Ilya
Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA.
Biophys J. 2004 Jun;86(6):3634-46. doi: 10.1529/biophysj.104.040121.
The inositol (1,4,5)-trisphosphate receptor (InsP(3)R) is an intracellular calcium (Ca(2+)) release channel that plays a crucial role in cell signaling. In Drosophila melanogaster a single InsP(3)R gene (itpr) encodes a protein (DmInsP(3)R) that is approximately 60% conserved with mammalian InsP(3)Rs. A number of itpr mutant alleles have been identified in genetic screens and studied for their effect on development and physiology. However, the functional properties of wild-type or mutant DmInsP(3)Rs have never been described. Here we use the planar lipid bilayer reconstitution technique to describe single-channel properties of embryonic and adult head DmInsP(3)R splice variants. The three mutants chosen in this study reside in each of the three structural domains of the DmInsP(3)R-the amino-terminal ligand binding domain (ug3), the middle-coupling domain (wc703), and the channel-forming region (ka901). We discovered that 1), the major functional properties of DmInsP(3)R (conductance, gating, and sensitivity to InsP(3) and Ca(2+)) are remarkably conserved with the mammalian InsP(3)R1; 2), single-channel conductance of the adult head DmInsP(3)R isoform is 89 pS and the embryonic DmInsP(3)R isoform is 70 pS; 3), ug3 mutation affects sensitivity of the DmInsP(3)Rs to activation by InsP(3), but not their InsP(3)-binding properties; 4), wc703 channels have increased sensitivity to modulation by Ca(2+); and 5), homomeric ka901 channels are not functional. We correlated the results obtained in planar lipid bilayer experiments with measurements of InsP(3)-induced Ca(2+) fluxes in microsomes isolated from wild-type and heterozygous itpr mutants. Our study validates the use of D. melanogaster as an appropriate model for InsP(3)R structure-function studies and provides novel insights into the fundamental mechanisms of the InsP(3)R function.
肌醇(1,4,5)-三磷酸受体(InsP(3)R)是一种细胞内钙(Ca(2+))释放通道,在细胞信号传导中起关键作用。在黑腹果蝇中,单个InsP(3)R基因(itpr)编码一种蛋白质(DmInsP(3)R),该蛋白质与哺乳动物InsP(3)R的保守性约为60%。在遗传筛选中已鉴定出多个itpr突变等位基因,并研究了它们对发育和生理的影响。然而,野生型或突变型DmInsP(3)R的功能特性从未被描述过。在这里,我们使用平面脂质双层重建技术来描述胚胎和成年头部DmInsP(3)R剪接变体的单通道特性。本研究中选择的三个突变体分别位于DmInsP(3)R的三个结构域中——氨基末端配体结合结构域(ug3)、中间偶联结构域(wc703)和通道形成区域(ka901)。我们发现:1)DmInsP(3)R的主要功能特性(电导、门控以及对InsP(3)和Ca(2+)的敏感性)与哺乳动物InsP(3)R1显著保守;2)成年头部DmInsP(3)R同工型的单通道电导为89 pS,胚胎DmInsP(3)R同工型为70 pS;3)ug3突变影响DmInsP(3)R对InsP(3)激活的敏感性,但不影响其InsP(3)结合特性;4)wc703通道对Ca(2+)调制的敏感性增加;5)同聚体ka901通道无功能。我们将平面脂质双层实验获得的结果与从野生型和杂合itpr突变体分离的微粒体中InsP(3)诱导的Ca(2+)通量测量结果相关联。我们的研究验证了黑腹果蝇作为InsP(3)R结构-功能研究的合适模型的用途,并为InsP(3)R功能的基本机制提供了新的见解。