Suppr超能文献

从尖峰到细胞间波:调节细胞间钙信号动力学可调节器官大小控制。

From spikes to intercellular waves: Tuning intercellular calcium signaling dynamics modulates organ size control.

机构信息

Department of Chemical and Biomolecular Engineering, University of Notre Dame, South Bend, Indiana, United States of America.

Bioengineering Graduate Program, University of Notre Dame, South Bend, Indiana, United States of America.

出版信息

PLoS Comput Biol. 2021 Nov 1;17(11):e1009543. doi: 10.1371/journal.pcbi.1009543. eCollection 2021 Nov.

Abstract

Information flow within and between cells depends significantly on calcium (Ca2+) signaling dynamics. However, the biophysical mechanisms that govern emergent patterns of Ca2+ signaling dynamics at the organ level remain elusive. Recent experimental studies in developing Drosophila wing imaginal discs demonstrate the emergence of four distinct patterns of Ca2+ activity: Ca2+ spikes, intercellular Ca2+ transients, tissue-level Ca2+ waves, and a global "fluttering" state. Here, we used a combination of computational modeling and experimental approaches to identify two different populations of cells within tissues that are connected by gap junction proteins. We term these two subpopulations "initiator cells," defined by elevated levels of Phospholipase C (PLC) activity, and "standby cells," which exhibit baseline activity. We found that the type and strength of hormonal stimulation and extent of gap junctional communication jointly determine the predominate class of Ca2+ signaling activity. Further, single-cell Ca2+ spikes are stimulated by insulin, while intercellular Ca2+ waves depend on Gαq activity. Our computational model successfully reproduces how the dynamics of Ca2+ transients varies during organ growth. Phenotypic analysis of perturbations to Gαq and insulin signaling support an integrated model of cytoplasmic Ca2+ as a dynamic reporter of overall tissue growth. Further, we show that perturbations to Ca2+ signaling tune the final size of organs. This work provides a platform to further study how organ size regulation emerges from the crosstalk between biochemical growth signals and heterogeneous cell signaling states.

摘要

细胞内和细胞间的信息流在很大程度上依赖于钙(Ca2+)信号动力学。然而,支配器官水平上涌现的 Ca2+信号动力学模式的生物物理机制仍然难以捉摸。最近在发育中的果蝇翅 imaginal 盘的实验研究表明,Ca2+活性出现了四种不同的模式:Ca2+峰、细胞间 Ca2+瞬变、组织水平 Ca2+波和全局“颤动”状态。在这里,我们使用计算建模和实验方法的组合来识别组织内通过间隙连接蛋白连接的两种不同的细胞群体。我们将这两种亚群称为“启动细胞”,其特征是磷酸脂酶 C(PLC)活性升高,以及“备用细胞”,其表现出基线活性。我们发现激素刺激的类型和强度以及间隙连接通讯的程度共同决定了 Ca2+信号活动的主要类别。此外,单细胞 Ca2+峰受胰岛素刺激,而细胞间 Ca2+波依赖于 Gαq 活性。我们的计算模型成功地再现了 Ca2+瞬变动力学在器官生长过程中的变化。对 Gαq 和胰岛素信号的单细胞 Ca2+扰动的表型分析支持细胞质 Ca2+作为整体组织生长的动态报告器的综合模型。此外,我们表明 Ca2+信号的扰动可以调节器官的最终大小。这项工作为进一步研究生化生长信号和异质细胞信号状态之间的相互作用如何产生器官大小调节提供了一个平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3927/8601605/eb1f3f26d853/pcbi.1009543.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验