Suppr超能文献

由脂多糖和细菌磷脂组成的支撑双层膜结构:筏的形成及其对细菌耐药性的影响。

Structure of supported bilayers composed of lipopolysaccharides and bacterial phospholipids: raft formation and implications for bacterial resistance.

作者信息

Tong Jihong, McIntosh Thomas J

机构信息

Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.

出版信息

Biophys J. 2004 Jun;86(6):3759-71. doi: 10.1529/biophysj.103.037507.

Abstract

Lipopolysaccharide (LPS), the major lipid on the surface of Gram-negative bacteria, plays a key role in bacterial resistance to hydrophobic antibiotics and antimicrobial peptides. Using atomic force microscopy (AFM) we characterized supported bilayers composed of LPSs from two bacterial chemotypes with different sensitivities to such antibiotics and peptides. Rd LPS, from more sensitive "deep rough" mutants, contains only an inner saccharide core, whereas Ra LPS, from "rough" mutants, contains a longer polysaccharide region. A vesicle fusion technique was used to deposit LPS onto either freshly cleaved mica or polyethylenimine-coated mica substrates. The thickness of the supported bilayers measured with contact-mode AFM was 7 nm for Rd LPS and 9 nm for Ra LPS, consistent with previous x-ray diffraction measurements. In water the Ra LPS bilayer surface was more disordered than Rd LPS bilayers, likely due to the greater volume occupied by the longer Ra LPS polysaccharide region. Since deep rough mutants contain bacterial phospholipid (BPL) as well as LPS on their surfaces, we also investigated the organization of Rd LPS/BPL bilayers. Differential scanning calorimetry and x-ray diffraction indicated that incorporation of BPL reduced the phase transition temperature, enthalpy, and average bilayer thickness of Rd LPS. For Rd LPS/BPL mixtures, AFM showed irregularly shaped regions thinner than Rd LPS bilayers by 2 nm (the difference in thickness between Rd LPS and BPL bilayers), whose area increased with increasing BPL concentration. We argue that the increased permeability of deep rough mutants is due to structural modifications caused by BPL to the LPS membrane, in LPS hydrocarbon chain packing and in the formation of BPL-enriched microdomains.

摘要

脂多糖(LPS)是革兰氏阴性菌表面的主要脂质,在细菌对疏水性抗生素和抗菌肽的抗性中起关键作用。我们使用原子力显微镜(AFM)对由来自两种对这类抗生素和肽具有不同敏感性的细菌化学型的LPS组成的支撑双层进行了表征。来自更敏感的“深粗糙”突变体的Rd LPS仅包含一个内糖核心,而来自“粗糙”突变体的Ra LPS包含一个更长的多糖区域。采用囊泡融合技术将LPS沉积到新劈开的云母或聚乙烯亚胺涂层的云母基底上。用接触模式AFM测量的支撑双层的厚度,Rd LPS为7nm,Ra LPS为9nm,与先前的X射线衍射测量结果一致。在水中,Ra LPS双层表面比Rd LPS双层更无序,这可能是由于更长的Ra LPS多糖区域占据了更大的体积。由于深粗糙突变体表面同时含有细菌磷脂(BPL)和LPS,我们还研究了Rd LPS/BPL双层的组织结构。差示扫描量热法和X射线衍射表明,BPL的掺入降低了Rd LPS的相变温度、焓和平均双层厚度。对于Rd LPS/BPL混合物,AFM显示出形状不规则的区域,其厚度比Rd LPS双层薄2nm(Rd LPS和BPL双层之间的厚度差),其面积随BPL浓度的增加而增加。我们认为,深粗糙突变体通透性增加是由于BPL对LPS膜的结构修饰,包括LPS烃链堆积以及富含BPL的微区形成。

相似文献

6
Structural polymorphisms of rough mutant lipopolysaccharides Rd to Ra from Salmonella minnesota.
J Struct Biol. 1993 May-Jun;110(3):232-43. doi: 10.1006/jsbi.1993.1026.
8
Liquid crystalline bacterial outer membranes are critical for antibiotic susceptibility.
Proc Natl Acad Sci U S A. 2018 Aug 7;115(32):E7587-E7594. doi: 10.1073/pnas.1803975115. Epub 2018 Jul 23.
9
Interaction of antimicrobial peptides with lipopolysaccharides.
Biochemistry. 2003 Oct 28;42(42):12251-9. doi: 10.1021/bi035130+.

引用本文的文献

1
Photocatalytic Degradation of Bacterial Lipopolysaccharides by Peptide-Coated TiO Nanoparticles.
ACS Appl Mater Interfaces. 2024 Nov 6;16(44):60056-60069. doi: 10.1021/acsami.4c15706. Epub 2024 Oct 23.
4
Exploring the Molecular Dynamics of a Lipid-A Vesicle at the Atom Level: Morphology and Permeation Mechanism.
J Phys Chem B. 2023 Aug 3;127(30):6694-6702. doi: 10.1021/acs.jpcb.3c02848. Epub 2023 Jul 19.
5
Development, structure and mechanics of a synthetic outer membrane model.
Nanoscale Adv. 2020 Dec 16;3(3):755-766. doi: 10.1039/d0na00977f. eCollection 2021 Feb 10.
6
Stapling of Peptides Potentiates the Antibiotic Treatment of In Vivo.
Antibiotics (Basel). 2022 Feb 19;11(2):273. doi: 10.3390/antibiotics11020273.
7
Lipopolysaccharide Simulations Are Sensitive to Phosphate Charge and Ion Parameterization.
J Chem Theory Comput. 2020 Mar 10;16(3):1806-1815. doi: 10.1021/acs.jctc.9b00868. Epub 2020 Feb 26.
9
A Molecularly Complete Planar Bacterial Outer Membrane Platform.
Sci Rep. 2016 Sep 7;6:32715. doi: 10.1038/srep32715.
10
Lipopolysaccharide-induced dynamic lipid membrane reorganization: tubules, perforations, and stacks.
Biophys J. 2014 Jun 3;106(11):2395-407. doi: 10.1016/j.bpj.2014.04.016.

本文引用的文献

1
Long-Range Interaction Forces between Polymer-Supported Lipid Bilayer Membranes.
Langmuir. 2001;17(15):4616-4626. doi: 10.1021/la0103012.
3
Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension.
Nature. 2003 Oct 23;425(6960):821-4. doi: 10.1038/nature02013.
4
Role of lipopolysaccharides in the adhesion, retention, and transport of Escherichia coli JM109.
Environ Sci Technol. 2003 May 15;37(10):2173-83. doi: 10.1021/es026159o.
6
A closer look at the canonical 'Raft Mixture' in model membrane studies.
Biophys J. 2003 Jan;84(1):725-6. doi: 10.1016/S0006-3495(03)74891-7.
7
Supported lipid bilayers as effective substrates for atomic force microscopy.
Methods Cell Biol. 2002;68:231-41. doi: 10.1016/s0091-679x(02)68012-4.
9
Scanning force microscopy of artificial membranes.
Chembiochem. 2001 Nov 5;2(11):798-808. doi: 10.1002/1439-7633(20011105)2:11<798::AID-CBIC798>3.0.CO;2-L.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验