Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
Biosensors (Basel). 2024 Jan 15;14(1):45. doi: 10.3390/bios14010045.
As membrane-mediated antibiotic resistance continues to evolve in Gram-positive bacteria, the development of new approaches to elucidate the membrane properties involved in antibiotic resistance has become critical. Membrane vesicles (MVs) secreted by the cytoplasmic membrane of Gram-positive bacteria contain native components, preserving lipid and protein diversity, nucleic acids, and sometimes virulence factors. Thus, MV-derived membrane platforms present a great model for Gram-positive bacterial membranes. In this work, we report the development of a planar bacterial cytoplasmic membrane-based biosensor using MVs isolated from the WT strain that can be coated on multiple surface types such as glass, quartz crystals, and polymeric electrodes, fostering the multimodal assessment of drug-membrane interactions. Retention of native membrane components such as lipoteichoic acids, lipids, and proteins is verified. This biosensor replicates known interaction patterns of the antimicrobial compound, daptomycin, with the Gram-positive bacterial membrane, establishing the applicability of this platform for carrying out biophysical characterization of the interactions of membrane-acting antibiotic compounds with the bacterial cytoplasmic membrane. We report changes in membrane viscoelasticity and permeability that correspond to partial membrane disruption when calcium ions are present with daptomycin but not when these ions are chelated. This biomembrane biosensing platform enables an assessment of membrane biophysical characteristics during exposure to antibiotic drug candidates to aid in identifying compounds that target membrane disruption as a mechanism of action.
随着革兰氏阳性菌中膜介导的抗生素耐药性不断演变,阐明与抗生素耐药性相关的膜特性的新方法的开发变得至关重要。革兰氏阳性菌细胞质膜分泌的膜泡 (MVs) 含有天然成分,保留了脂质和蛋白质的多样性、核酸,有时还有毒力因子。因此,MV 衍生的膜平台为革兰氏阳性菌的膜提供了一个很好的模型。在这项工作中,我们报告了使用从 WT 菌株中分离的 MVs 开发的基于平面细菌细胞质膜的生物传感器,该传感器可以涂覆在多种表面类型上,如玻璃、石英晶体和聚合物电极,促进了药物-膜相互作用的多模式评估。保留了天然膜成分,如脂磷壁酸、脂质和蛋白质。该生物传感器复制了抗菌化合物达托霉素与革兰氏阳性菌膜的已知相互作用模式,确立了该平台在进行作用于膜的抗生素化合物与细菌细胞质膜相互作用的生物物理特性表征中的适用性。我们报告了当存在钙离子与达托霉素时,膜粘弹性和通透性的变化,而当螯合这些离子时则没有这种变化。这种生物膜生物传感平台能够在暴露于抗生素药物候选物期间评估膜的生物物理特性,以帮助识别以膜破坏为作用机制的化合物。
Biosensors (Basel). 2024-1-15
Antimicrob Agents Chemother. 1990-6
Biochim Biophys Acta. 2011-4
Ann N Y Acad Sci. 2023-1
ACS Infect Dis. 2021-11-12
Ann N Y Acad Sci. 2015-9
Biosens Bioelectron. 2022-5-15
Membranes (Basel). 2022-5-27
Biosens Bioelectron. 2022-5-15
ACS Appl Bio Mater. 2021-11-15
ACS Infect Dis. 2021-9-10
Front Mol Biosci. 2021-5-11
Colloids Surf B Biointerfaces. 2021-3
Front Microbiol. 2020-10-21