文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于革兰氏阳性菌膜的多模态膜-抗生素相互作用研究生物传感器

Gram-Positive Bacterial Membrane-Based Biosensor for Multimodal Investigation of Membrane-Antibiotic Interactions.

机构信息

Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.

Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.

出版信息

Biosensors (Basel). 2024 Jan 15;14(1):45. doi: 10.3390/bios14010045.


DOI:10.3390/bios14010045
PMID:38248423
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10813107/
Abstract

As membrane-mediated antibiotic resistance continues to evolve in Gram-positive bacteria, the development of new approaches to elucidate the membrane properties involved in antibiotic resistance has become critical. Membrane vesicles (MVs) secreted by the cytoplasmic membrane of Gram-positive bacteria contain native components, preserving lipid and protein diversity, nucleic acids, and sometimes virulence factors. Thus, MV-derived membrane platforms present a great model for Gram-positive bacterial membranes. In this work, we report the development of a planar bacterial cytoplasmic membrane-based biosensor using MVs isolated from the WT strain that can be coated on multiple surface types such as glass, quartz crystals, and polymeric electrodes, fostering the multimodal assessment of drug-membrane interactions. Retention of native membrane components such as lipoteichoic acids, lipids, and proteins is verified. This biosensor replicates known interaction patterns of the antimicrobial compound, daptomycin, with the Gram-positive bacterial membrane, establishing the applicability of this platform for carrying out biophysical characterization of the interactions of membrane-acting antibiotic compounds with the bacterial cytoplasmic membrane. We report changes in membrane viscoelasticity and permeability that correspond to partial membrane disruption when calcium ions are present with daptomycin but not when these ions are chelated. This biomembrane biosensing platform enables an assessment of membrane biophysical characteristics during exposure to antibiotic drug candidates to aid in identifying compounds that target membrane disruption as a mechanism of action.

摘要

随着革兰氏阳性菌中膜介导的抗生素耐药性不断演变,阐明与抗生素耐药性相关的膜特性的新方法的开发变得至关重要。革兰氏阳性菌细胞质膜分泌的膜泡 (MVs) 含有天然成分,保留了脂质和蛋白质的多样性、核酸,有时还有毒力因子。因此,MV 衍生的膜平台为革兰氏阳性菌的膜提供了一个很好的模型。在这项工作中,我们报告了使用从 WT 菌株中分离的 MVs 开发的基于平面细菌细胞质膜的生物传感器,该传感器可以涂覆在多种表面类型上,如玻璃、石英晶体和聚合物电极,促进了药物-膜相互作用的多模式评估。保留了天然膜成分,如脂磷壁酸、脂质和蛋白质。该生物传感器复制了抗菌化合物达托霉素与革兰氏阳性菌膜的已知相互作用模式,确立了该平台在进行作用于膜的抗生素化合物与细菌细胞质膜相互作用的生物物理特性表征中的适用性。我们报告了当存在钙离子与达托霉素时,膜粘弹性和通透性的变化,而当螯合这些离子时则没有这种变化。这种生物膜生物传感平台能够在暴露于抗生素药物候选物期间评估膜的生物物理特性,以帮助识别以膜破坏为作用机制的化合物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ed8/10813107/174a94fbb7e3/biosensors-14-00045-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ed8/10813107/6bcc412a3287/biosensors-14-00045-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ed8/10813107/bbccd0d4740d/biosensors-14-00045-g002a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ed8/10813107/c9b32380dcd7/biosensors-14-00045-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ed8/10813107/738f118f0c2a/biosensors-14-00045-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ed8/10813107/d6db3cacd8cc/biosensors-14-00045-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ed8/10813107/31b3d703d32e/biosensors-14-00045-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ed8/10813107/174a94fbb7e3/biosensors-14-00045-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ed8/10813107/6bcc412a3287/biosensors-14-00045-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ed8/10813107/bbccd0d4740d/biosensors-14-00045-g002a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ed8/10813107/c9b32380dcd7/biosensors-14-00045-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ed8/10813107/738f118f0c2a/biosensors-14-00045-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ed8/10813107/d6db3cacd8cc/biosensors-14-00045-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ed8/10813107/31b3d703d32e/biosensors-14-00045-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ed8/10813107/174a94fbb7e3/biosensors-14-00045-g007.jpg

相似文献

[1]
Gram-Positive Bacterial Membrane-Based Biosensor for Multimodal Investigation of Membrane-Antibiotic Interactions.

Biosensors (Basel). 2024-1-15

[2]
Lipoteichoic acid as a new target for activity of antibiotics: mode of action of daptomycin (LY146032).

Antimicrob Agents Chemother. 1990-6

[3]
Lipid membrane-binding properties of daptomycin using surface plasmon resonance.

Anal Sci. 2013

[4]
Oligomerization of daptomycin on membranes.

Biochim Biophys Acta. 2011-4

[5]
Daptomycin-resistant Enterococcus faecalis diverts the antibiotic molecule from the division septum and remodels cell membrane phospholipids.

mBio. 2013-7-23

[6]
The role of bacterial membrane vesicles in antibiotic resistance.

Ann N Y Acad Sci. 2023-1

[7]
Phosphate Ions Alter the Binding of Daptomycin to Living Bacterial Cell Surfaces.

ACS Infect Dis. 2021-11-12

[8]
Mechanisms of drug resistance: daptomycin resistance.

Ann N Y Acad Sci. 2015-9

[9]
Impedance sensing of antibiotic interactions with a pathogenic E. coli outer membrane supported bilayer.

Biosens Bioelectron. 2022-5-15

[10]
Antibiotic-affinity strategy for bioluminescent detection of viable Gram-positive bacteria using daptomycin as recognition agent.

Anal Chim Acta. 2017-8-26

引用本文的文献

[1]
Engineering Planar Gram-Negative Outer Membrane Mimics Using Bacterial Outer Membrane Vesicles.

Langmuir. 2024-11-5

[2]
Engineering Planar Gram-Negative Outer Membrane Mimics Using Bacterial Outer Membrane Vesicles.

bioRxiv. 2024-8-20

本文引用的文献

[1]
An Impedance-Based Approach for Sensing Cyclodextrin-Mediated Modulation of Membrane Cholesterol.

Langmuir. 2023-7-18

[2]
Formation of a Fully Anionic Supported Lipid Bilayer to Model Bacterial Inner Membrane for QCM-D Studies.

Membranes (Basel). 2022-5-27

[3]
Impedance sensing of antibiotic interactions with a pathogenic E. coli outer membrane supported bilayer.

Biosens Bioelectron. 2022-5-15

[4]
Detection of Ganglioside-Specific Toxin Binding with Biomembrane-Based Bioelectronic Sensors.

ACS Appl Bio Mater. 2021-11-15

[5]
Functional Infectious Nanoparticle Detector: Finding Viruses by Detecting Their Host Entry Functions Using Organic Bioelectronic Devices.

ACS Nano. 2021-11-23

[6]
Clinically Relevant Bacterial Outer Membrane Models for Antibiotic Screening Applications.

ACS Infect Dis. 2021-9-10

[7]
Mini Review: Bacterial Membrane Composition and Its Modulation in Response to Stress.

Front Mol Biosci. 2021-5-11

[8]
Daptomycin-Induced Lipid Phases on Model Lipid Bilayers: Effect of Lipid Type and of Lipid Leaflet Order on Membrane Permeability.

J Phys Chem B. 2021-6-10

[9]
Mixed liposomes containing gram-positive bacteria lipids: Lipoteichoic acid (LTA) induced structural changes.

Colloids Surf B Biointerfaces. 2021-3

[10]
Resistance Mechanisms to Antimicrobial Peptides in Gram-Positive Bacteria.

Front Microbiol. 2020-10-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索