Watkins Lucas P, Yang Haw
Department of Chemistry, Graduate Group in Biophysics, University of California at Berkeley, Berkeley, California 94720, USA.
Biophys J. 2004 Jun;86(6):4015-29. doi: 10.1529/biophysj.103.037739.
Time-resolved single molecule fluorescence measurements may be used to probe the conformational dynamics of biological macromolecules. The best time resolution in such techniques will only be achieved by measuring the arrival times of individual photons at the detector. A general approach to the estimation of molecular parameters based on individual photon arrival times is presented. The amount of information present in a data set is quantified by the Fisher information, thereby providing a guide to deriving the basic equations relating measurement uncertainties and time resolution. Based on these information-theoretical considerations, a data analysis algorithm is presented that details the optimal analysis of single-molecule data. This method natively accounts and corrects for background photons and cross talk, and can scale to an arbitrary number of channels. By construction, and with corroboration from computer simulations, we show that this algorithm reaches the theoretical limit, extracting the maximal information out of the data. The bias inherent in the algorithm is considered and its implications for experimental design are discussed. The ideas underlying this approach are general and are expected to be applicable to any information-limited measurement.
时间分辨单分子荧光测量可用于探测生物大分子的构象动力学。此类技术中的最佳时间分辨率只有通过测量单个光子到达探测器的时间才能实现。本文提出了一种基于单个光子到达时间来估计分子参数的通用方法。数据集中的信息量通过费舍尔信息进行量化,从而为推导测量不确定性与时间分辨率之间的基本方程提供指导。基于这些信息理论考量,本文提出了一种数据分析算法,详细说明了单分子数据的最优分析方法。该方法能自然地考虑并校正背景光子和串扰,并且可以扩展到任意数量的通道。通过构建以及计算机模拟的验证,我们表明该算法达到了理论极限,能从数据中提取最大信息。我们考虑了该算法中固有的偏差,并讨论了其对实验设计的影响。这种方法背后的思想具有普遍性,预计可应用于任何信息受限的测量。