Verguts Tom, Storms Gert
Department of Experimental Psychology, Ghent University, H. Dunantlaan 2, 9000 Ghent, Belgium.
Behav Res Methods Instrum Comput. 2004 Feb;36(1):1-10. doi: 10.3758/bf03195544.
Mathematical models of cognition often contain unknown parameters whose values are estimated from the data. A question that generally receives little attention is how informative such estimates are. In a maximum likelihood framework, standard errors provide a measure of informativeness. Here, a standard error is interpreted as the standard deviation of the distribution of parameter estimates over multiple samples. A drawback to this interpretation is that the assumptions that are required for the maximum likelihood framework are very difficult to test and are not always met. However, at least in the cognitive science community, it appears to be not well known that standard error calculation also yields interpretable intervals outside the typical maximum likelihood framework. We describe and motivate this procedure and, in combination with graphical methods, apply it to two recent models of categorization: ALCOVE (Kruschke, 1992) and the exemplar-based random walk model (Nosofsky & Palmeri, 1997). The applications reveal aspects of these models that were not hitherto known and bring a mix of bad and good news concerning estimation of these models.
认知的数学模型通常包含一些未知参数,其值需从数据中估计得出。一个通常很少受到关注的问题是,这样的估计有多具信息性。在最大似然框架中,标准误差提供了一种信息性的度量。在这里,标准误差被解释为参数估计在多个样本上的分布的标准差。这种解释的一个缺点是,最大似然框架所需的假设非常难以检验,而且并不总是成立。然而,至少在认知科学界,似乎鲜为人知的是,标准误差计算在典型的最大似然框架之外也能产生可解释的区间。我们描述并推动了这个过程,并结合图形方法,将其应用于最近的两个分类模型:ALCOVE(克鲁施克,1992)和基于范例的随机游走模型(诺索夫斯基和帕尔梅里,1997)。这些应用揭示了这些模型迄今未知的方面,并带来了有关这些模型估计的好坏参半的消息。