Suppr超能文献

关于二分项目反应模型中一类能力稳健估计量的渐近标准误差

On the asymptotic standard error of a class of robust estimators of ability in dichotomous item response models.

作者信息

Magis David

机构信息

Department of Education, University of Liège, Belgium; Department of Psychology, Katholieke Universiteit Leuven, Belgium.

出版信息

Br J Math Stat Psychol. 2014 Nov;67(3):430-50. doi: 10.1111/bmsp.12027. Epub 2013 Sep 10.

Abstract

In item response theory, the classical estimators of ability are highly sensitive to response disturbances and can return strongly biased estimates of the true underlying ability level. Robust methods were introduced to lessen the impact of such aberrant responses on the estimation process. The computation of asymptotic (i.e., large-sample) standard errors (ASE) for these robust estimators, however, has not yet been fully considered. This paper focuses on a broad class of robust ability estimators, defined by an appropriate selection of the weight function and the residual measure, for which the ASE is derived from the theory of estimating equations. The maximum likelihood (ML) and the robust estimators, together with their estimated ASEs, are then compared in a simulation study by generating random guessing disturbances. It is concluded that both the estimators and their ASE perform similarly in the absence of random guessing, while the robust estimator and its estimated ASE are less biased and outperform their ML counterparts in the presence of random guessing with large impact on the item response process.

摘要

在项目反应理论中,能力的经典估计量对反应干扰高度敏感,可能会给出关于真实潜在能力水平的严重有偏估计。引入稳健方法以减轻此类异常反应对估计过程的影响。然而,这些稳健估计量的渐近(即大样本)标准误差(ASE)的计算尚未得到充分考虑。本文聚焦于一类广泛的稳健能力估计量,通过适当选择权重函数和残差度量来定义,其ASE是从估计方程理论推导出来的。然后在模拟研究中通过生成随机猜测干扰来比较最大似然(ML)估计量和稳健估计量及其估计的ASE。得出的结论是,在没有随机猜测的情况下,估计量及其ASE的表现相似,而在存在对项目反应过程有重大影响的随机猜测时,稳健估计量及其估计的ASE偏差较小且优于其ML对应物。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验