Van Den Noortgate Wim, Onghena Patrick
Department of Educational Sciences, Katholieke Universiteit Leuven, Belgium.
Behav Res Methods. 2005 Feb;37(1):11-22. doi: 10.3758/bf03206394.
In a meta-analysis, the unknown parameters are often estimated using maximum likelihood, and inferences are based on asymptotic theory. It is assumed that, conditional on study characteristics included in the model, the between-study distribution and the sampling distributions of the effect sizes are normal. In practice, however, samples are finite, and the normality assumption may be violated, possibly resulting in biased estimates and inappropriate standard errors. In this article, we propose two parametric and two nonparametric bootstrap methods that can be used to adjust the results of maximum likelihood estimation in meta-analysis and illustrate them with empirical data. A simulation study, with raw data drawn from normal distributions, reveals that the parametric bootstrap methods and one of the nonparametric methods are generally superior to the ordinary maximum likelihood approach but suffer from a bias/precision tradeoff. We recommend using one of these bootstrap methods, but without applying the bias correction.
在一项荟萃分析中,未知参数通常使用最大似然法进行估计,并且推断是基于渐近理论的。假设在模型中包含的研究特征的条件下,研究间分布和效应量的抽样分布是正态的。然而,在实际中,样本是有限的,正态性假设可能会被违反,这可能导致估计有偏差和标准误差不合适。在本文中,我们提出了两种参数化和两种非参数化的自助法,可用于调整荟萃分析中最大似然估计的结果,并通过实证数据进行说明。一项模拟研究,其原始数据来自正态分布,结果表明参数化自助法和其中一种非参数方法通常优于普通最大似然法,但存在偏差/精度权衡。我们建议使用这些自助法中的一种,但不应用偏差校正。