Hayasaka Satoru, Phan K Luan, Liberzon Israel, Worsley Keith J, Nichols Thomas E
Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109-2029, USA.
Neuroimage. 2004 Jun;22(2):676-87. doi: 10.1016/j.neuroimage.2004.01.041.
Because of their increased sensitivity to spatially extended signals, cluster-size tests are widely used to detect changes and activations in brain images. However, when images are nonstationary, the cluster-size distribution varies depending on local smoothness. Clusters tend to be large in smooth regions, resulting in increased false positives, while in rough regions, clusters tend to be small, resulting in decreased sensitivity. Worsley et al. proposed a random field theory (RFT) method that adjusts cluster sizes according to local roughness of images [Worsley, K.J., 2002. Nonstationary FWHM and its effect on statistical inference of fMRI data. Presented at the 8th International Conference on Functional Mapping of the Human Brain, June 2-6, 2002, Sendai, Japan. Available on CD-ROM in NeuroImage 16 (2) 779-780; Hum. Brain Mapp. 8 (1999) 98]. In this paper, we implement this method in a permutation test framework, which requires very few assumptions, is known to be exact [J. Cereb. Blood Flow Metab. 16 (1996) 7] and is robust [NeuroImage 20 (2003) 2343]. We compared our method to stationary permutation, stationary RFT, and nonstationary RFT methods. Using simulated data, we found that our permutation test performs well under any setting examined, whereas the nonstationary RFT test performs well only for smooth images under high df. We also found that the stationary RFT test becomes anticonservative under nonstationarity, while both nonstationary RFT and permutation tests remain valid under nonstationarity. On a real PET data set we found that, though the nonstationary tests have reduced sensitivity due to smoothness estimation variability, these tests have better sensitivity for clusters in rough regions compared to stationary cluster-size tests. We include a detailed and consolidated description of Worsley nonstationary RFT cluster-size test.
由于对空间扩展信号的敏感性增加,聚类大小检验被广泛用于检测脑图像中的变化和激活。然而,当图像是非平稳的时,聚类大小分布会因局部平滑度而变化。在平滑区域聚类往往较大,导致误报增加,而在粗糙区域,聚类往往较小,导致灵敏度降低。沃斯利等人提出了一种随机场理论(RFT)方法,该方法根据图像的局部粗糙度调整聚类大小[沃斯利,K.J.,2002年。非平稳半高宽及其对功能磁共振成像数据统计推断的影响。在第八届人类脑功能图谱国际会议上发表,2002年6月2日至6日,日本仙台。可在NeuroImage 16 (2) 779 - 780的光盘上获取;人类脑图谱8 (1999) 98]。在本文中,我们在置换检验框架中实现了该方法,该框架需要的假设非常少,已知是精确的[《脑血流与代谢杂志》16 (1996) 7]且具有鲁棒性[NeuroImage 20 (2003) 2343]。我们将我们的方法与平稳置换、平稳RFT和非平稳RFT方法进行了比较。使用模拟数据,我们发现我们的置换检验在任何检验设置下都表现良好,而非平稳RFT检验仅在高自由度下对平滑图像表现良好。我们还发现,平稳RFT检验在非平稳性下会变得反保守,而非平稳RFT和置换检验在非平稳性下仍然有效。在一个真实的正电子发射断层扫描(PET)数据集上,我们发现,尽管由于平滑度估计的可变性,非平稳检验的灵敏度有所降低,但与平稳聚类大小检验相比,这些检验对粗糙区域的聚类具有更好的灵敏度。我们提供了沃斯利非平稳RFT聚类大小检验的详细和综合描述。