Suppr超能文献

功能性脑图像中三维簇概率的估计。

Estimation of the probabilities of 3D clusters in functional brain images.

作者信息

Ledberg A, Akerman S, Roland P E

机构信息

Department of Neuroscience, Karolinska Institute, Doktorsringen 12, Stockholm, S-171 77, Sweden.

出版信息

Neuroimage. 1998 Aug;8(2):113-28. doi: 10.1006/nimg.1998.0336.

Abstract

The interpretation of functional brain images is often hampered by the presence of noise. This problem is most commonly solved by using a statistical method and only considering signals that are unlikely to occur by chance. The method used should be specific and sensitive, specific because only true signals are of interest and sensitive because this will enable more information to be extracted from each experiment. Here we present a modification of the cluster analysis proposed by Roland et al. (Human Brain Mapping 1: 3-19, 1993). A covariance model is used to test hypotheses for each voxel. The generated statistical images are searched for the largest clusters. From the same data set noise images are generated. For each of these noise images the autocorrelation function is estimated. These estimates are subsequently used to generate simulated noise images, from which a distribution of cluster sizes is derived. The derived distribution is used to estimate probabilities for the clusters detected in the statistical images generated by testing the hypothesis. This presented method is shown to be specific and is further compared with SPM96 and the nonparametric method of Holmes et al. (J. Cereb. Blood Flow Metab. 16: 7-22, 1996).

摘要

脑功能图像的解读常常受到噪声的干扰。这个问题通常通过使用统计方法并只考虑不太可能偶然出现的信号来解决。所使用的方法应该具有特异性和敏感性,特异性是因为只有真正的信号才是我们感兴趣的,敏感性是因为这将使我们能够从每个实验中提取更多信息。在这里,我们对罗兰等人(《人类脑图谱》1:3 - 19,1993)提出的聚类分析方法进行了改进。使用协方差模型对每个体素进行假设检验。在生成的统计图像中搜索最大的聚类。从相同的数据集中生成噪声图像。对这些噪声图像中的每一个估计自相关函数。随后,这些估计值被用于生成模拟噪声图像,从中得出聚类大小的分布。所得到的分布用于估计在通过假设检验生成的统计图像中检测到的聚类的概率。本文提出的方法被证明具有特异性,并进一步与SPM96以及霍姆斯等人(《脑血流与代谢杂志》16:7 - 22,1996)的非参数方法进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验