Suppr超能文献

将体素强度和聚类范围与置换检验框架相结合。

Combining voxel intensity and cluster extent with permutation test framework.

作者信息

Hayasaka Satoru, Nichols Thomas E

机构信息

Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

Neuroimage. 2004 Sep;23(1):54-63. doi: 10.1016/j.neuroimage.2004.04.035.

Abstract

In a massively univariate analysis of brain image data, statistical inference is typically based on intensity or spatial extent of signals. Voxel intensity-based tests provide great sensitivity for high intensity signals, whereas cluster extent-based tests are sensitive to spatially extended signals. To benefit from the strength of both, the intensity and extent information needs to be combined. Various ways of combining voxel intensity and cluster extent are possible, and a few such combining methods have been proposed. Poline et al.'s [NeuroImage 16 (1997) 83] minimum P value approach is sensitive to signals whose either intensity or extent is significant. Bullmore et al.'s [IEEE Trans. Med. Imag. 18 (1999) 32] cluster mass method can detect signals whose intensity and extent are sufficiently large, even when they are not significant by intensity or extent alone. In this work, we study such combined inference methods using combining functions (Pesarin, F., 2001. Multivariate Permutation Tests. Wiley, New York) and permutation framework [Holmes et al., J. Cereb. Blood Flow Metab. 16 (1996) 7], which allow us to examine different ways of combining voxel intensity and cluster extent information without knowing their distribution. We also attempt to calibrate combined inference by using weighted combining functions, which adjust the test according to signals of interest. Furthermore, we propose meta-combining, a combining function of combining functions, which integrates strengths of multiple combining functions into a single statistic. We found that combined tests are able to detect signals that are not detected by voxel or cluster size test alone. We also found that the weighted combining functions can calibrate the combined test according to the signals of interest, emphasizing either intensity or extent as appropriate. Though not necessarily more sensitive than individual combining functions, the meta-combining function is sensitive to all types of signals and thus can be used as a single test summarizing all the combining functions.

摘要

在对脑图像数据进行大规模单变量分析时,统计推断通常基于信号的强度或空间范围。基于体素强度的检验对高强度信号具有很高的灵敏度,而基于聚类范围的检验对空间扩展信号敏感。为了同时利用两者的优势,需要将强度和范围信息结合起来。有多种方法可以结合体素强度和聚类范围,并且已经提出了一些这样的结合方法。波利内等人[《神经影像学》16(1997)83]的最小P值方法对强度或范围显著的信号敏感。布尔莫尔等人[《IEEE医学影像学汇刊》18(1999)32]的聚类质量方法能够检测强度和范围足够大的信号,即使它们单独在强度或范围上不显著。在这项工作中,我们使用结合函数(佩萨林,F.,2001年。《多变量置换检验》。威利出版社,纽约)和置换框架[霍姆斯等人,《脑血流与代谢杂志》16(1996)7]来研究这种联合推断方法,这使我们能够在不知道体素强度和聚类范围信息分布的情况下,研究结合它们的不同方式。我们还尝试通过使用加权结合函数来校准联合推断,该函数根据感兴趣的信号调整检验。此外,我们提出了元结合,一种结合函数的结合函数,它将多个结合函数的优势整合到一个单一统计量中。我们发现联合检验能够检测出单独的体素或聚类大小检验无法检测到的信号。我们还发现加权结合函数可以根据感兴趣的信号校准联合检验,适当地强调强度或范围。虽然元结合函数不一定比单个结合函数更敏感,但它对所有类型的信号都敏感,因此可以用作总结所有结合函数的单一检验。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验