Suppr超能文献

功能磁共振成像血流动力学反应模式的估计与分类。

Estimation and classification of fMRI hemodynamic response patterns.

作者信息

Gibbons Robert D, Lazar Nicole A, Bhaumik Dulal K, Sclove Stanley L, Chen Hua Yun, Thulborn Keith R, Sweeney John A, Hur Kwan, Patterson Dave

机构信息

Center for Health Statistics, University of Illinois at Chicago, Chicago, IL 60612, USA.

出版信息

Neuroimage. 2004 Jun;22(2):804-14. doi: 10.1016/j.neuroimage.2004.02.003.

Abstract

In this paper, we propose an approach to modeling functional magnetic resonance imaging (fMRI) data that combines hierarchical polynomial models, Bayes estimation, and clustering. A cubic polynomial is used to fit the voxel time courses of event-related design experiments. The coefficients of the polynomials are estimated by Bayes estimation, in a two-level hierarchical model, which allows us to borrow strength from all voxels. The voxel-specific Bayes polynomial coefficients are then transformed to the times and magnitudes of the minimum and maximum points on the hemodynamic response curve, which are in turn used to classify the voxels as being activated or not. The procedure is demonstrated on real data from an event-related design experiment of visually guided saccades and shown to be an effective alternative to existing methods.

摘要

在本文中,我们提出了一种对功能磁共振成像(fMRI)数据进行建模的方法,该方法结合了分层多项式模型、贝叶斯估计和聚类。使用三次多项式来拟合事件相关设计实验的体素时间历程。多项式的系数通过贝叶斯估计在两级分层模型中进行估计,这使我们能够从所有体素中借鉴强度。然后将特定于体素的贝叶斯多项式系数转换为血液动力学响应曲线上最小点和最大点的时间和幅度,进而用于将体素分类为是否被激活。该过程在视觉引导扫视的事件相关设计实验的真实数据上得到了验证,并被证明是现有方法的一种有效替代方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验